矩阵的特征值(eigenvalue)和特征向量(eigenvector)

对于某个方阵,其特征值为,特征向量为,有如下式子成立:

时间: 2024-10-18 03:13:30

矩阵的特征值(eigenvalue)和特征向量(eigenvector)的相关文章

线性代数之矩阵的特征值与特征向量

数学上,线性变换的特征向量(本征向量)是一个非退化的向量,其方向在该变换下不变.该向量在此变换下缩放的比例称为其特征值(本征值). 一个线性变换通常可以由其特征值和特征向量完全描述.特征空间是相同特征值的特征向量的集合.“特征”一词来自德语的eigen.1904年希尔伯特首先 在这个意义下使用了这个词,更早亥尔姆霍尔兹也在相关意义下使用过该词.eigen一词可翻译为”自身的”.“特定于……的”.“有特征的”.或者“个体 的”.这显示了特征值对于定义特定的线性变换有多重要. 线性变换的特征向量是指

矩阵——特征向量(Eigenvector)

原文链接 矩阵的基础内容以前已经提到,今天我们来看看矩阵的重要特性——特征向量. 矩阵是个非常抽象的数学概念,很多人到了这里往往望而生畏.比如矩阵的乘法为什么有这样奇怪的定义?实际上是由工程实际需要定义过来的.如果只知道概念不懂有何用处,思维就只有抽象性而没有直观性,实在是无法感受矩阵的精妙. 直观性说明 我们先看点直观性的内容.矩阵的特征方程式是: A * x = lamda * x 这个方程可以看出什么?上次我们提到矩阵实际可以看作一个变换,方程左边就是把向量x变到另一个位置而已:右边就是把

浅浅地聊一下矩阵与线性映射及矩阵的特征值与特征向量

都说矩阵其实就是线性映射,你明白不?反正一开始我是不明白的: 线性映射用矩阵表示:(很好明白的) 有两个线性空间,分别为V1与V2, V1的一组基表示为,V2的一组基表示为:(注意哦,维度可以不一样啊,反正就是线性空间啊), 1, 现在呢,有一个从V1到V2的映射F, 它可以把V1中的一组基都映射到线性空间V2中去,所以有: 用矩阵可以表示为: 2,现在我们把在V1中有一个向量A,经过映射F变为了向量B,用公式表示为:                                 所以呢,坐标

利用QR算法求解矩阵的特征值和特征向量

利用QR算法求解矩阵的特征值和特征向量 为了求解一般矩阵(不是那种幼稚到shi的2 x 2矩阵)的特征值. 根据定义的话,很可能需要求解高阶方程... 这明显是个坑...高阶方程你肿么破... 折腾了好久 1.我要求特征值和特征向量. 2.找到一种算法QR分解矩阵求解特征值 3.QR矩阵分解需要Gram-schimidt正交化分解 有一种很明显的感觉,往往在现在很难有 很系统 很深入 的学习某一个学科的某一门知识. 往往学的时候"靠,学这东西有什么用""学了这么久,也不知道怎么用,不想学" 到后

矩阵的特征值和特征向量的雅克比算法C/C++实现

矩阵的特征值和特征向量是线性代数以及矩阵论中很重要的一个概念.在遥感领域也是经经常使用到.比方多光谱以及高光谱图像的主成分分析要求解波段间协方差矩阵或者相关系数矩阵的特征值和特征向量. 依据普通线性代数中的概念,特征值和特征向量能够用传统的方法求得,可是实际项目中一般都是用数值分析的方法来计算,这里介绍一下雅可比迭代法求解特征值和特征向量. 雅克比方法用于求实对称阵的所有特征值.特征向量. 对于实对称阵 A,必有正交阵 U.使 U TA U = D. 当中 D 是对角阵,其主对角线元 li 是

线性代数 - 05 矩阵的特征值与特征向量

线性代数 - 05 矩阵的特征值与特征向量 一.特征值与特征向量 二.矩阵的相似与矩阵的对角化 三.实对称矩阵的对角化 1.向量的内积与正交矩阵 2.实对称矩阵的特征值与特征向量 线性代数 - 05 矩阵的特征值与特征向量,码迷,mamicode.com

线性代数精华——矩阵的特征值与特征向量

今天和大家聊一个非常重要,在机器学习领域也广泛使用的一个概念--矩阵的特征值与特征向量. 我们先来看它的定义,定义本身很简单,假设我们有一个n阶的矩阵A以及一个实数\(\lambda\),使得我们可以找到一个非零向量x,满足: \[Ax=\lambda x\] 如果能够找到的话,我们就称\(\lambda\)是矩阵A的特征值,非零向量x是矩阵A的特征向量. 几何意义 光从上面的式子其实我们很难看出来什么,但是我们可以结合矩阵变换的几何意义,就会明朗很多. 我们都知道,对于一个n维的向量x来说,如

矩阵的特征值分解

引入问题:给定一个对角线非零的上三角矩阵\(M\),求\(M^k\),满足\(M\)的阶\(\le 500\),\(k\le 10^9\). 对998244353取模. 一个显而易见的算法是矩阵快速幂,然而是\(O(N^3\log k)\)的,无法通过本题. 一开始我想,既然是上三角矩阵,那么特征多项式一定不难求,那么是用CH定理+FFT多项式取模啥搞搞? 然而我naive了. 这题我们可以把\(M\)特征值分解为\(Q^{-1}AQ\)形式,其中\(A\)是一个对角矩阵. 那么\(M^k=(Q

【Math】证明:实对称阵属于不同特征值的的特征向量是正交的

证明:实对称阵属于不同特征值的的特征向量是正交的. 设Ap=mp,Aq=nq,其中A是实对称矩阵,m,n为其不同的特征值,p,q分别为其对应得特征向量. 则 p1(Aq)=p1(nq)=np1q (p1A)q=(p1A1)q=(AP)1q=(mp)1q=mp1q 因为 p1(Aq)= (p1A)q 上两式作差得: (m-n)p1q=0 由于m不等于n, 所以p1q=0 即(p,q)=0,从而p,q正交.说明:p1表示p的转置,A1表示A的转置,(Ap)1表示Ap的转置