Investigation of Different Nets and Layers

Investigation of Different Nets and Layers

Overview of AlexNet (MIT Places | Flickr Finetuned | Oxford Flowers) 
Overview of GoogLeNet/Inception (ImageNet | MIT Places)

Mondrian‘s Broadway - different iterations (10, 20, 30, 40, 50)

seperate pages

VIS_bvlc_googlenet_allLayers
VIS_googlenet_places205_allLayers
VIS_finetune_flickr_style_allLayers
VIS_alexnet_places_allLayers
VIS_oxford102flowers_allLayers

Painting Experiments

investigation into deepdream and art together with C.M. Kosemen

Google drive with press release & paintings | more artwork 
(mainstream news: gizmododaily orbittech radar)

Video Experiments

(mainstream news: wired eng | de, businessinsider 1 | 2gizmodothe vergerolling stoneopen cultureslateindependentthe next webbuzzfeeddigg)

时间: 2024-10-13 04:04:42

Investigation of Different Nets and Layers的相关文章

[转载] Conv Nets: A Modular Perspective

原文地址:http://colah.github.io/posts/2014-07-Conv-Nets-Modular/ Conv Nets: A Modular Perspective Posted on July 8, 2014 neural networks, deep learning, convolutional neural networks, modular neural networks Introduction In the last few years, deep neura

A Statistical View of Deep Learning (IV): Recurrent Nets and Dynamical Systems

A Statistical View of Deep Learning (IV): Recurrent Nets and Dynamical Systems Recurrent neural networks (RNNs) are now established as one of the key tools in the machine learning toolbox for handling large-scale sequence data. The ability to specify

A Deep Dive into Recurrent Neural Nets

A Deep Dive into Recurrent Neural Nets Last time, we talked about the traditional feed-forward neural net and concepts that form the basis of deep learning. These ideas are extremely powerful! We saw how feed-forward convolutional neural networks hav

(转)Deep Learning Research Review Week 1: Generative Adversarial Nets

Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Generative Adversarial Nets Starting this week, I’ll be doing a new series called Deep Learning Research Review. Every couple weeks or so, I’ll be summa

【转载】Project on Learning Deep Belief Nets

Project on Learning Deep Belief Nets Deep Belief Nets (DBN's) will be explained in the lecture on Oct 29. Instead of learning layers of features by backpropagating errors, they learn one layer at a time by trying to build a generative model of the da

卷积神经网络和CIFAR-10:Yann LeCun专访 Convolutional Nets and CIFAR-10: An Interview with Yann LeCun

Recently Kaggle hosted a competition on the CIFAR-10 dataset. The CIFAR-10 dataset consists of 60k 32x32 colour images in 10 classes. This dataset was collected by AlexKrizhevsky, Vinod Nair, and Geoffrey Hinton. Many contestants used convolutional n

【论文笔记】Recursive Recurrent Nets with Attention Modeling for OCR in the Wild

写在前面: 我看的paper大多为Computer Vision.Deep Learning相关的paper,现在基本也处于入门阶段,一些理解可能不太正确.说到底,小女子才疏学浅,如果有错误及理解不透彻的地方,欢迎各位大神批评指正! E-mail:[email protected]. <Recursive Recurrent Nets with Attention Modeling for OCR in the Wild>已经被CVPR 2016(CV领域三大顶会之一)正式接收了,主要是介绍了

DEEPLY SUPERVISED NETS

DEEPLY SUPERVISED NETS Fig1: Deeply-supervised Nets architecture and cost functions illustration Abstract We propose deeply-supervised nets (DSN), a method that simultaneously minimizes classification error while improving the directness and transpar

对抗神经网络(Adversarial Nets)的介绍[1]

对抗NN简介 概念介绍 对抗名字的由来及对抗过程 对抗NN的模型 对抗NN的模型和训练 判别网络D的最优值 模拟学习高斯分布 对抗NN实验结果 <生成对抗NN>代码的安装与运行 对抗网络相关论文 论文引用 一.对抗NN简介 大牛Ian J. Goodfellow 的2014年的<Generative Adversative Nets>第一次提出了对抗网络模型,短短两年的时间,这个模型在深度学习生成模型领域已经取得了不错的成果.论文提出了一个新的框架,可以利用对抗过程估计生成模型,相