Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
1 #include <iostream> 2 #include <cstdio> 3 using namespace std; 4 5 int main() 6 { 7 int n,t,i,j,k,first,end,sum,x,max; 8 cin>>t; 9 for(j=1;j<=t;j++) 10 { 11 cin>>n; 12 sum=0; 13 max=-1001; 14 first=end=k=1; 15 for(i=1;i<=n;i++) 16 { 17 cin>>x; 18 sum+=x; 19 if(sum>max) 20 { 21 max=sum; 22 first=k; 23 end=i; 24 } 25 if(sum<0) 26 { 27 sum=0; 28 k=i+1; 29 } 30 } 31 if(j!=1) 32 printf("\n"); 33 printf("Case %d:\n",j); 34 printf("%d %d %d\n",max,first,end); 35 36 } 37 return 0; 38 }