NOIP2016模拟 最长公共子序列

其实题目是这个样子的:

仔细看能够知道,每条轨道上火车的编号都是递减的,这样就等价于求他的最大上升子序列的长度,由于N比较大,所以采用nlogn的LIS方法  f[i]表示长度为i的最长上升子序列最后一个最小为f[i],首先易证f[i]中存的数单调递增的 这样对于每个a[i],若a[i]>现有已知最长上升子序列的最后一个数,那么len++,f[len]=a[i] 否则 在1~len中二分,找到第一个比a[i]打的数f[j]吧f[j]更新成a[i]

 1 #include <cstdio>
 2 #include <cmath>
 3 #include <cstdlib>
 4 #include <cstring>
 5 #include <queue>
 6 #include <stack>
 7 #include <vector>
 8 #include <iostream>
 9 #include "algorithm"
10 #define mem(a,b) memset(a,b,sizeof(a))
11 using namespace std;
12 typedef long long LL;
13 const int MAX=100005;
14 int n;
15 int a[MAX],f[MAX];
16 int main(){
17     freopen ("manage.in","r",stdin);
18     freopen ("manage.out","w",stdout);
19     int i,j;
20     int low,high,mid,len;
21     scanf("%d",&n);
22     for (i=1;i<=n;i++)
23      scanf("%d",a+i);
24     len=0;
25     for (i=1;i<=n;i++){
26         if (a[i]>f[len])
27             f[++len]=a[i];
28         else{
29             low=1;high=len-1;
30             while (low<=high){
31                 mid=(low+high)>>1;
32                 if (f[mid]<=a[i])
33                  low=mid+1;
34                 else
35                  high=mid-1;
36             }
37             f[low]=a[i];
38         }
39     }
40     printf("%d",len);
41     return 0;
42 }

其实是个模板题

时间: 2024-10-11 01:05:14

NOIP2016模拟 最长公共子序列的相关文章

动规,模拟,递推,最长公共子序列

题目链接:http://poj.org/problem?id=1458 解题报告: 1.用二维数组模拟两个字符串上每个子串对应的最长公共子序列. 2.显然,就是要求二维数组最右下的数字 3.递推公式: if(s1[i-1]==s2[j-1]) maxlen[i][j]=maxlen[i-1][j-1]+1; else maxlen[i][j]=max(maxlen[i][j-1],maxlen[i-1][j]); Memory: 1024KTime: 0MSLanguage: C++Result

poj1159--Palindrome(dp:最长公共子序列变形 + 滚动数组)

Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 53414   Accepted: 18449 Description A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a

最长公共子序列的代码实现

关于最长公共子序列(LCS)的相关知识,http://blog.csdn.net/liufeng_king/article/details/8500084 这篇文章讲的比较好,在此暂时不再详说. 以下是我代码实现两种方式:递归+递推: 1 #include <bits/stdc++.h> 2 using namespace std; 3 int A[100]; 4 int B[100]; 5 6 //int B[]={2,3,5,6,9,8,4}; 7 int d[100][100]={0};

NYOJ 36 &amp;&amp;HDU 1159 最长公共子序列(经典)

链接:click here 题意:tip:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列. 输入 第一行给出一个整数N(0<N<100)表示待测数据组数 接下来每组数据两行,分别为待测的两组字符串.每个字符串长度不大于1000. 输出 每组测试数据输出一个整数,表示最长公共子序列长度.每组

poj1159 Palindrome(最长公共子序列)

Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 52966   Accepted: 18271 Description A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a

最长公共子序列(LCS)问题

最长公共子串(Longest Common Substirng)和最长公共子序列(Longest Common Subsequence,LCS)的区别为:子串是串的一个连续的部分,子序列则是从不改变序列的顺序,而从序列中去掉任意的元素而获得新的序列:也就是说,子串中字符的位置必须是连续的,子序列则可以不必连续. 1.序列str1和序列str2 ·长度分别为m和n: ·创建1个二维数组L[m.n]: ·初始化L数组内容为0 ·m和n分别从0开始,m++,n++循环: - 如果str1[m] ==

Longest Common Substring(最长公共子序列)

Longest Common Substring Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 37 Accepted Submission(s): 28   Problem Description Given two strings, you have to tell the length of the Longest Common Su

最长公共子序列针对小字符集的算法

一般对于两个字符串,长度分别为n和m,其时间复杂度为O(nm). 但是针对小字符集的情况,可以把复杂度降低到O(n^2),其中n为两个字符串较短的长度.这种方法对于两个字符串长度相差很大的情况比O(nm)要优化很多. 就假设所有的字符都是小写字母,这样就符合小字符集的前提了.设较短的字符串为S1,较长的字符串为S2.字符串下标从1开始. S2字符串每个位置右边第一个字符是可以通过O(km)预处理得到的.其中k为小字符集的字符个数,m为较长的那个字符串的长度. 用next[i][j]表示S2[i]

动态规划-最长公共子序列

(1).问题描述:给出2个序列,x是从1到m,y是从1到n,找出x和y的最长公共子序列? x:A B C B D A B y:B D C A B A 则:最长公共子序列长度为4,BDAB BCAB BCBA均为LCS(最长公共子序列): 模型实现图: (2).问题解决 代码实现了最长公共子序列的长度 #include<stdio.h> #define N    10 int LCS(int *a, int count1, int *b, int count2); int LCS(int *a,