Black Box
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 7770 | Accepted: 3178 |
Description
Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:
ADD (x): put element x into Black Box;
GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending.
Let us examine a possible sequence of 11 transactions:
Example 1
N Transaction i Black Box contents after transaction Answer (elements are arranged by non-descending) 1 ADD(3) 0 3 2 GET 1 3 3 3 ADD(1) 1 1, 3 4 GET 2 1, 3 3 5 ADD(-4) 2 -4, 1, 3 6 ADD(2) 2 -4, 1, 2, 3 7 ADD(8) 2 -4, 1, 2, 3, 8 8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8 9 GET 3 -1000, -4, 1, 2, 3, 8 1 10 GET 4 -1000, -4, 1, 2, 3, 8 2 11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8
It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.
Let us describe the sequence of transactions by two integer arrays:
1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).
2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).
The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.
Input
Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.
Output
Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.
Sample Input
7 4 3 1 -4 2 8 -1000 2 1 2 6 6
Sample Output
3 3 1 2
Source
#include <iostream> #include <stdio.h> #include <time.h> using namespace std; #define N 30100 #define INF 0x7fffffff int val[N]; struct Treap { int ch[N][2],fix[N],size[N]; int top,root; inline void PushUp(int rt) { size[rt]=size[ch[rt][0]]+size[ch[rt][1]]+1; } void Newnode(int &rt,int v) { rt=++top; val[rt]=v; size[rt]=1; fix[rt]=rand(); ch[rt][0]=ch[rt][1]=0; } void Init() { top=root=0; ch[0][0]=ch[0][1]=0; size[0]=val[0]=0; memset(size,0,sizeof(size)); } void Rotate(int &x,int kind) { int y=ch[x][kind^1]; ch[x][kind^1]=ch[y][kind]; ch[y][kind]=x; PushUp(x); PushUp(y); x=y; } void Insert(int &rt,int v) { if(!rt) Newnode(rt,v); else { int kind=(v>=val[rt]); size[rt]++; Insert(ch[rt][kind],v); if(fix[ch[rt][kind]]<fix[rt]) Rotate(rt,kind^1); } } int Find(int rt,int k) { int cnt=size[ch[rt][0]]; if(k==cnt+1) return val[rt]; else if(k<=cnt) return Find(ch[rt][0],k); else return Find(ch[rt][1],k-cnt-1); } }t; int main() { int n,i,m; srand((int)time(0)); while(scanf("%d%d",&n,&m)!=EOF) { t.Init(); for(i=1;i<=n;i++) { scanf("%d",&val[i]); } int last=1,x; for(i=1;i<=m;i++) { scanf("%d",&x); while(last<=x) { t.Insert(t.root,val[last]); last++; } printf("%d\n",t.Find(t.root,i)); } } return 0; }