Machine Learning Techniques -0

开学前还有一段时间,正好差不多可以follow台大Hsuan-Tien Lin老师Machine Learning Techniques这门课:

不过只输入信息而不输出效率太低,所以建个博客记录一下。

时间: 2024-11-09 03:55:58

Machine Learning Techniques -0的相关文章

Machine Learning Techniques -1-Linear Support Vector Machine

1-Linear Support Vector Machine 我们将这种定义为margin,则之前判断最优划分的问题转化为寻找最大margain的问题. 对于待选的几个w所表示的线,问题转化成利用对应w比较相对距离的问题. 此时定义w为方向向量,b为之前的w0,即bia. 由于w就是所求点到直线的法线方向,问题转化为求投影的问题. 因为每个点对应符号yn只有在和距离表示的绝对值内部符号为+的时候才说明划分正确,所以可以乘上yn来去除abs() 这里的距离是一种容忍度,所以我们选其中最近的那个.

Machine Learning Techniques -3-Dual Support Vector Machine

For the naive thought to practise my academic English skill, the rest of my notes will be wrriten in my terrrible English.XD If you have any kind of uncomfortable feel, please close this window and refer to the original edition from Mr. Lin. I will b

Machine Learning Techniques -5-Kernel Logistic Regression

5-Kernel Logistic Regression Last class, we learnt about soft margin and its application. Now, a new idea comes to us, could we apply the kernel trick to our old frirend logistic regression? Firstly, let's review those four concepts of margin handlin

Machine Learning Techniques -6-Support Vector Regression

6-Support Vector Regression For the regression with squared error, we discuss the kernel ridge regression. With the knowledge of kernel function, could we find an analytic solution for kernel ridge regression? Since we want to find the best βn Howeve

A Survey of Machine Learning Techniques Applied to Software Defined Networking (SDN): Research Issues and Challenges

将机器学习用到SDN中的综述:研究的问题和挑战 从流量分类.路由优化.服务质量(Qos)/体验质量(QoE)预测.资源管理和安全性的角度,回顾了机器学习算法如何应用于SDN领域. 相关知识 在SDN中应用机器学习是合适的原因: 图形处理单元GPU和张量处理单元TPU等技术为机器学习提供了很好的机会: 集中式SDN控制器具有全局网络视图,能够收集各种网络数据,便于机器学习算法的应用. 基于实时和历史网络数据,机器学习技术可以通过执行数据分析,网络优化和网络服务的自动提供来为SDN控制器提供智能化.

Awesome Machine Learning

Awesome Machine Learning  A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you want to contribute to this list (please do), send me a pull request or contact me @josephmisiti Als

Machine Learning for Developers

Machine Learning for Developers Most developers these days have heard of machine learning, but when trying to find an 'easy' way into this technique, most people find themselves getting scared off by the abstractness of the concept of Machine Learnin

[Machine Learning & Algorithm]CAML机器学习系列2:深入浅出ML之Entropy-Based家族

声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine Learning>一书中的开头有讲到:“概率论.决策论.信息论3个重要工具贯穿着<PRML>整本书,虽然看起来令人生畏…”.确实如此,其实这3大理论在机器学习的每一种技法中,或多或少都会出现其身影(不局限在概率模型). <PRML>书中原话:”This chapter also

[C5] Andrew Ng - Structuring Machine Learning Projects

About this Course You will learn how to build a successful machine learning project. If you aspire to be a technical leader in AI, and know how to set direction for your team's work, this course will show you how. Much of this content has never been