poj 2391 Ombrophobic Bovines(最大流+floyd+二分)

Ombrophobic Bovines

Time Limit: 1000MS
Memory Limit: 65536K

Total Submissions: 14519
Accepted: 3170

Description

FJ‘s cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.
The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.
Some of the farm‘s fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.
Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P
* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.
* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110
 
题意:有F块地,告诉你每块地牛的数量和雨篷能遮蔽的牛的数量,有P条路,告诉你每条路连接的两块地和牛走这条路所需要的时间。
     要你求让所有的牛都能在雨棚下躲雨的最短时间,如果做不到,输出-1
一下解释来自:http://www.2cto.com/kf/201406/312530.html
二分时间,然后把每个田地之间的最短距离用floyd最短路求出来。然后建立一个源点与汇点,将田地拆分成两个点,在距离之内的
进行连边,要单向连边。然后将源点与田地相连,权值为每个田地的牛的数目,再把另一边的田地与汇点相连,权值为每个田地最大
可避雨的牛的数目。拆开的田地之间权值可以为无穷大。
view code#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
typedef long long ll;
const ll INF = 1LL<<60;
const int inf = 1<<30;
const int N = 500;
int n, F, P, pre[N], cur[N];
int s, t, d[N];
ll dis[N][N];

struct om
{
    int num, cap;
}loc[N];

struct edge
{
    int u, v, cap, flow, next;
    edge(int u, int v, int cap, int flow, int next):u(u), v(v), cap(cap), flow(flow), next(next) {}
    edge() {}
}e[N*N*4];
int ecnt;

void floyd()
{
    for(int k=1; k<=n; k++)
        for(int i=1; i<=n; i++) if(dis[i][k]!=INF)
            for(int j=1; j<=n; j++)
                if(dis[k][j]!=INF && dis[i][j]>dis[i][k] + dis[k][j])
                    dis[i][j] = dis[i][k] + dis[k][j];
}

void addedge(int u, int v, int w)
{
    e[ecnt] = edge(u, v, w, 0, pre[u]);
    pre[u] = ecnt++;
    e[ecnt] = edge(v, u, 0, 0, pre[v]);
    pre[v] = ecnt++;
}

bool vis[N<<1];
bool BFS()
{
    memset(vis, 0 ,sizeof(vis));
    queue<int > q;
    q.push(s);
    d[s] = 0;
    vis[s] = 1;
    while(!q.empty())
    {
        int x = q.front(); q.pop();
        for(int i = pre[x]; ~i; i=e[i].next)
        {
            int v = e[i].v;
            if(!vis[v] && e[i].cap>e[i].flow)
            {
                vis[v] = 1;
                d[v] = d[x] + 1;
                q.push(v);
            }
        }
    }
    return vis[t];
}

int DFS(int x, int c)
{
    if(x==t || c==0) return c;
    int flow = 0, f;
    for(int &i=cur[x]; ~i; i=e[i].next)
    {
        int v = e[i].v;
        if(d[x]+1==d[v] && (f=DFS(v,min(c,e[i].cap-e[i].flow)))>0)
        {
            e[i].flow += f;
            e[i^1].flow -=f;
            flow += f;
            c -= f;
            if(c==0) break;
        }
    }
    return flow;
}

ll Maxflow(int s, int t)
{
    int flow = 0;
    while(BFS())
    {
        for(int i=s; i<=t; i++) cur[i] = pre[i];
        flow += DFS(s, inf);
    }
    return flow;
}

bool is_ok(ll m, int sum)
{
    s = 0, t = n*2+1;
    memset(pre, -1, sizeof(pre));
    ecnt = 0;
    for(int i=1; i<=n; i++)
    {
        addedge(s, i, loc[i].num);
        addedge(i+n, t, loc[i].cap);
    }

    for(int i=1; i<=n; i++)
        for(int j=1; j<=n; j++) if(dis[i][j]<=m)
                addedge(i, j+n, inf);

    return Maxflow(s,t)>=sum;
}

ll solve()
{
    int sumn = 0, sumc = 0;
    for(int i=1; i<=n; i++)
    {
        scanf("%d%d", &loc[i].num, &loc[i].cap);
        sumn += loc[i].num;
        sumc += loc[i].cap;
    }
    int u, v, w;
    for(int i=1; i<=n; i++)
    {
        for(int j=1; j<=n; j++) dis[i][j] = INF;
        dis[i][i] = 0;
    }
    for(int i=0; i<P; i++)
    {
        scanf("%d%d%d", &u, &v, &w);
        if(w<dis[u][v]) dis[u][v] = dis[v][u] = w;
    }
    if(sumn > sumc) return -1;
    floyd();

    ll l = 0, r = 0, ans = -1;
    for(int i=1; i<n; i++)
    {
        for(int j=i+1; j<=n; j++)
           if(r<dis[i][j] && dis[i][j]!=INF) r = dis[i][j];
    }
    while(l<=r)
    {
        ll mid = (l+r)>>1;
        if(is_ok(mid, sumn)) ans = mid, r = mid - 1;
        else l = mid + 1;
//        printf("ans = %d\n", ans);
    }
    return ans;
}

int main()
{
//    freopen("in", "r", stdin);
    while(scanf("%d%d", &n, &P)>0) cout<<solve()<<endl;
    return 0;
}

poj 2391 Ombrophobic Bovines(最大流+floyd+二分)

时间: 2024-11-13 06:40:18

poj 2391 Ombrophobic Bovines(最大流+floyd+二分)的相关文章

poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic

poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 15时39分22秒 * File Name: poj2391.cpp */ #include <ctime> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring&g

POJ 2391 Ombrophobic Bovines 不喜欢雨的奶牛 Floyd+二分枚举+最大流

题目链接:POJ 2391 Ombrophobic Bovines Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15006   Accepted: 3278 Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes

POJ 2391 Ombrophobic Bovines (二分 + floyd + 网络流)

POJ 2391 Ombrophobic Bovines 链接:http://poj.org/problem?id=2391 题目:农场有F 块草地,1≤F≤200,奶牛们在草地上吃草.这些草地之间有P 条路相连,1≤P≤1500,这些路足够宽,再多的奶牛也能同时在路上行走.有些草地上有避雨点,奶牛们可以在此避雨.避雨点的容量是有限的,所以一个避雨点不可能容纳下所有的奶牛.草地与路相比很小,奶牛们通过时不需要花费时间.计算警报至少需要提前多少时间拉响,以保证所有的奶牛都能到达一个避雨点. 思路:

POJ 2391 Ombrophobic Bovines(最大流+拆点)

POJ 2391 Ombrophobic Bovines 题目链接 题意:一些牛棚,有a只牛,现在下雨,每个牛棚容量量变成b,现在有一些道路连接了牛棚,问下雨后牛走到其他牛棚,使得所有牛都有地方躲雨,最后一只牛要走多久 思路:二分答案,然后最大流去判断,建图的方式为,牛棚拆点,源点连向入点,容量为a,出点连向汇点容量为b,中间入点和出点之间根据二分的值判断哪些边是可以加入的 代码: #include <cstdio> #include <cstring> #include <

POJ 2391 Ombrophobic Bovines (二分,最短路径,网络流sap,dinic,预留推进 )

Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14019   Accepted: 3068 Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They h

Poj 2391 Ombrophobic Bovines 网络流 拆点

Poj 2391 Ombrophobic Bovines 网络流 拆点 FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approa

poj 2391 Ombrophobic Bovines 二分+最大流

同poj 2112. 代码: //poj 2391 //sep9 #include <iostream> #include <queue> #include <algorithm> using namespace std; typedef long long ll; const int maxN=1024; const int maxM=100002; const ll MAX=(1ULL<<63)-1; struct Edge { int v,f,nxt;

POJ 2391 Ombrophobic Bovines

Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18623   Accepted: 4057 Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They h

POJ 2391 —— Ombrophobic Bovines 二分+Floyd+最大流

原题:http://poj.org/problem?id=2391 #include<cstdio> #include<cstring> #include<string> #include<queue> #include<vector> #define inf 1LL<<60 #define ll long long using namespace std; const int maxn = 500; const int maxm =