图像处理中的数学原理详解21——PCA实例与图像编码

欢迎关注我的博客专栏“图像处理中的数学原理详解

全文目录请见 图像处理中的数学原理详解(总纲)

http://blog.csdn.net/baimafujinji/article/details/48467225

图像处理中的数学原理详解(已发布的部分链接整理)

http://blog.csdn.net/baimafujinji/article/details/48751037

如果你对PCA的推导和概念还不是很清楚,建议阅读本文的前导文章

http://blog.csdn.net/baimafujinji/article/details/50372906

6.4.3 主成分变换的实现

本小节通过一个算例验证一下之前的推导。在前面给出的例子中,各点在原始的

由于方程是齐次的,所以不独立。因为系数矩阵有零行列式,所以方程有非无效解。从两个方程的任何一个可见

现在考虑该结论该如何解释。特征向量g1和g2是在原坐标系中用来定义主成分轴的向量,如图6-20所示,其中,e1和e2分别是水平和垂直的方向向量。显而易见,这些数据在新坐标系中是非相关的。该新坐标系是原坐标系的旋转,出于这种原因,可以将主成分变换理解为旋转变换(即使在高维空间上亦是如此)。

6.4.4 基于K-L变换的图像压缩

从图像压缩的角度出发,我们必然希望变换系数协方差矩阵Σx 中除对角线外的所有协方差均为零,成为对角线矩阵,即原来像素间的相关性经变换后全部解除,或者至少大部分协方差要等于或接近于零。为此,需要选择适当的变换矩阵,它作用于Σx 后使其变成对角线型。通过前面的分析和推导,可知这样的变换矩阵是存在的。如果用协方差矩阵Σx 的特征向量作变换的基向量,即由Σx 的特征向量作为正交变换的变换矩阵,就可以得到对角线型的变换域协方差矩阵Σy 。K-L变换就是采用这种矩阵进行变换的正交变换,它可以在变换域完全解除相关性,因此是理论上的最佳变换。同时,换一个角度也可以证明,K-L变换是均方误差最小准则下的最佳变换,即当压缩比确定的情况下,采用K-L变换后,重建图像的均方误差比采用任何其他正交变换的都小。

但是回顾之前进行的K-L变换,哪个步骤可以称为图像压缩的切入点呢?一幅大小为M×N的图像,它的协方差矩阵Σx大小为MN×MN。由上述K-L变换理论可知,对X进行K-L变换的变换矩阵就是Σx的特征向量矩阵,该矩阵大小亦为MN×MN,其大小远远大于原始图像数据矩阵。而且要在解码时恢复原图像,不但需要变换后的系数矩阵Y,还需要知道逆变换矩阵(也就是变换矩阵的转置)。如果不经过任何处理就这样直接将K-L变换用于数字图像的压缩编码,不但达不到任何数据压缩的效果,还极大的增加了数据量。即使仅保留一个最大的特征值,变换矩阵中和该特征值对应的特征向量为M×N维,系数矩阵 Y 保留的元素为一个。要重建图像数据,需要保留的元素个数为仍大于原矩阵,所以达不到压缩的目的。另外,求一个矩阵的协方差矩阵和特征向量矩阵,都是非常复杂的运算过程,需要大量的计算。当X比较大时,运算时间的耗用可能是非常大的。有时甚至会出现因为过于复杂而导致Σx和变换矩阵无法求解的情况。

要解决上述问题,可以考虑将图像分成若干个小块,然后对每个小块分别进行K-L变换(这与本章前面的处理方式基本保持一致)。这样使得Σx和变换矩阵都比较小,计算机处理起来比较容易而且速度快。这里仍然将图像划分为多个不重叠的8×8小块(当图像垂直和水平方向的像素数不是8的倍数时补0,使之均为8的倍数)。然后再分别对每一个小块执行K-L变换,变换矩阵的数目为K个,每个矩阵大小为64×64,仅变换矩阵就要记录K×64×64个数据,还是远远大于原始数据的个数M×N。是否可以让变换矩阵的数量变得少些,最好只保留一个变换矩阵。回忆前面做K-L变换的例子,变换矩阵的大小与输入矩阵的维度有关,而与样本数量无关,据此可以将每个8×8小块变成一个行向量(也就是一个64维的数组),原图中的每一个小方块都是一个64维的样本。所以最后只需要一个64×64的变换矩阵即可,它对于原图像的任意一个数据块都适用。这样的处理方式并不是完全意义上的K-L 变换,因为采用分块的处理方式,各个数据块之间的相关性是没有消除的。但实验亦表明,这样的K-L 变换虽然不能完全消除图像各像素点之间的相关性,也能达到很好的去相关效果,在去相关性性能上优于离散余弦变换。

图像数据经K-L变换后,得到的系数矩阵Y大部分系数都很小,接近于零。只有很少的几个系数的数值比较大,这正是K-L变换所起到的去除像素间的相关性,把能量集中分布在较少的变换系数上的作用的结果。据此,在图像数据压缩时,系数矩阵Y保留M个分量,其余分量则舍去。在实际编程开发中,经K-L变换后的系数矩阵中的数值都是按从大到小的顺序排列的,所以直接舍去后面的64?M个分量即可。通过这一步的处理,便可动态地调节压缩编码系统的压缩比和重建图像的质量。解码时,首先做K-L逆变换,然后将上述过程逆转,可以得到重建后的图像数据矩阵。

我们在MATLAB中编写的示例程序演示了运用上述方法对图像实施基于K-L变换的压缩处理的过程。最后可以通过编程实现基于K-L变换的图像压缩算法并测试其压缩效果,所得之测试结果如图6-22所示。该程序验证了三种不同的压缩比,即舍去排序后的系数矩阵中的32/64(对应压缩比50%)、48/64(对应压缩比75%)以及56/64(对应压缩比87.5%)。相关测试程序源码读者可以从本书的在线支持资源中下载得到。

最后需要补充说明的是尽管K-L变换可以将数据之间的相关性完全去除,所以理论上是一种最理想的数据压缩方案,但它在实际应用过程中仍然受到很大局限。例如,它没有快速算法,不同的图像所对应的变换矩阵也不同,从这个角度来说,单纯将K-L变换直接应用于图像数据压缩的理论价值要大于实际价值。它的存在意义,一方面是可以作为理论验证的参考模板,另一方面就是需要对原始算法加以改进后再付诸应用。

时间: 2024-10-11 18:16:23

图像处理中的数学原理详解21——PCA实例与图像编码的相关文章

图像处理中的数学原理具体解释21——PCA实例与图像编码

欢迎关注我的博客专栏"图像处理中的数学原理具体解释" 全文文件夹请见 图像处理中的数学原理具体解释(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 假设你对PCA的推导和概念还不是非常清楚.建议阅读本文的前导文章 http://blog.csdn.net/baimafujinji/article/details/50372906 6.4.3 主成分变换的实现 本小节通过一个算例验证一下之前的推导.在前面给出的

图像处理中的数学原理详解17——卷积定理及其证明

欢迎关注我的博客专栏"图像处理中的数学原理详解" 全文目录请见 图像处理中的数学原理详解(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 图像处理中的数学原理详解(已发布的部分链接整理) http://blog.csdn.net/baimafujinji/article/details/48751037 1.4.5   卷积定理及其证明 卷积定理是傅立叶变换满足的一个重要性质.卷积定理指出,函数卷积的傅立叶变

图像处理中的数学原理详解18——内积与外积

欢迎关注我的博客专栏"图像处理中的数学原理详解" 全文目录请见 图像处理中的数学原理详解(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 图像处理中的数学原理详解(已发布的部分链接整理) http://blog.csdn.net/baimafujinji/article/details/48751037 1.3.2 内积与外积 因为cos(π/2)=0.当然,这也是众多教科书上介绍向量内积最开始时常常用到的一

详解希尔伯特空间——图像处理中的数学原理详解23

欢迎关注我的博客专栏"图像处理中的数学原理详解" 全文目录请见 图像处理中的数学原理详解(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 图像处理中的数学原理详解(已发布的部分链接整理) http://blog.csdn.net/baimafujinji/article/details/48751037 交流学习可加图像处理研究学习QQ群(529549320) 有段时间没继续更新我的"图像处理中的数

图像处理中的数学原理详解9——索伯列夫空间

全文目录请见 图像处理中的数学原理详解(Part1 总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 在泛函分析中,索伯列夫空间并不像 巴拿赫空间或者希尔伯特空间那么引入注意.但是在图像处理中,索伯列夫空间在介绍BV空间(有界变差函数空间)时,会被提到.而BV函数空间对于理解TV算法(偏微分方程在图像处理中的重要内容)至关重要!所以我特别在"图像处理中的数学原理详解"系列文章中留出一个小节来对索伯列夫空间进行必

图像处理中的数学原理详解13——内积空间

全文目录请见 图像处理中的数学原理详解(Part1 总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 2.3.5 内积空间 前面我们已经讨论过关于内积的话题,此处以公理化的形式给出内积的定义. 版权声明:本文为博主原创文章,未经博主允许不得转载.

图像处理中的数学原理详解(Part7) ——哈密尔顿算子

全文目录请见 图像处理中的数学原理详解(Part1 总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 在前面的部分中我们已经完整地给出了梯度和散度这些数学概念的意义,这些生涩的定义在最初学习的时候很少有人会注意到它们跟图像能有什么联系.然而,随着学习的深入,当真正接触到图像处理算法时,你又不得不承认,梯度.散度这些东西几乎是无处不在的.本节所介绍的内容就是这些概念在图像处理中的最最简单应用之范例.这部分内容与边缘检测技术

图像处理中的数学原理详解15——数列的极限

欢迎关注我的博客专栏"图像处理中的数学原理详解" 全文目录请见 图像处理中的数学原理详解(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 图像处理中的数学原理详解(已发布的部分链接整理) http://blog.csdn.net/baimafujinji/article/details/48751037 数学是图像处理技术的重要基础.在与图像处理有关的研究和实践中无疑需要用到大量的数学知识,这不免令许多基础薄

图像处理中的数学原理详解14——曲面积分

欢迎关注我的博客专栏"图像处理中的数学原理详解" 全文目录请见 图像处理中的数学原理详解(总纲) http://blog.csdn.net/baimafujinji/article/details/48467225 图像处理中的数学原理详解(已发布的部分链接整理) http://blog.csdn.net/baimafujinji/article/details/48751037 我整理了图像处理中可能用到的一些数学基础,将其分成了6个章节(全文目录见上方链接).如果你对其中的某一小节