【BZOJ】3502 PA2012 Tanie linie

【算法】

【题解】

胡策k≤10的环状DP做法:

1.钦定法:先确定第一位(可能和第n位)的状态,然后后面正常做DP,显然正确答案是一定会被记录的,因为从整体上看不会有影响。

2.环的特性:取的段和不取的段数量相等,位置互补。所以1和n的连接处都选或都不选都会有不被包括的情况,一选一不选就和链一样了。

正解贪心:

因为相邻的正数或相邻的负数肯定是要选一起选,所以点缩成正负正负…的数列形式,那么考虑先选择全部正的。

如果选择的段数过多,考虑删除则有两种选择:舍弃一个正数(相当于舍弃一个正数和两个负数,把这三个数视为一个负数),选择一个负数(相当于选择一个负数和两个正数,把这三个数视为一个正数)。

那么显然这两种行为是等价的:都是合并相邻的三个数字,可以视为对绝对值最小的数字操作最优,然后过程中用堆动态维护即可。

非环的情况特殊处理:不可能选择头尾的负数,因为没办法合并两个正数,过程中需要判断这个,而且这个头尾还会变化。

对拍还是查找错误相当重要的方式!考试一定要写暴力拍!

据说可以开头特判一些东西跳掉没用个数据——数据是死的,人是活的,出题人是懒的。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int maxn=1000010;

long long a[maxn],n,m,k,b[maxn],pre[maxn],suc[maxn];
bool f[maxn];
struct cyc
{
    long long num,ord;
    bool p;
    bool operator <(const cyc &a) const
    {
        return num>a.num;
    }
}qp;
priority_queue<cyc>q;
int main()
{

//    freopen("input","r",stdin);

    scanf("%lld%lld",&n,&k);
    bool now=0;long long tot,m=0;
    long long ans=0;
    scanf("%lld",&a[1]);
    b[(tot=1)]=a[1];now=a[1]>0;
    for(int i=2;i<=n;i++)
    {
        scanf("%lld",&a[i]);
        if(a[i]>0&&!now)
        {
            now=1;
            b[++tot]=a[i];
        }
        else if(a[i]<=0&&now)
        {
            now=0;
            b[++tot]=a[i];
        }
        else b[tot]+=a[i];
    }
//    if((b[tot]>0)==(b[1]>0)&&tot!=1){b[1]+=b[tot];tot--;}//操作顺序
    for(int i=1;i<=tot;i++)
    {
        pre[i]=i-1;suc[i]=i+1;
        if(b[i]>0){ans+=b[i];m++;}
        q.push((cyc){(b[i]>0?b[i]:-b[i]),i,b[i]>0});
    }
//    pre[1]=tot;suc[tot]=1;
    suc[tot]=0;
    long long en=tot,be=1;
    for(int i=m;i>k;i--)
    {
        while(f[q.top().ord]||((q.top().ord==be||q.top().ord==en)&&!q.top().p))q.pop();
        qp=q.top();q.pop();
        long long sum=0;long long A=pre[qp.ord],B=suc[qp.ord];
        if(qp.p)sum=qp.num+b[A]+b[B];
        else sum=b[A]+b[B]-qp.num;
        ans-=qp.num;
        if(suc[pre[A]])suc[pre[A]]=qp.ord;pre[qp.ord]=pre[A];
        if(pre[suc[B]])pre[suc[B]]=qp.ord;suc[qp.ord]=suc[B];
        f[A]=f[B]=1;b[qp.ord]=sum;
        //printf("ord=%lld num=%lld sum=%lld\n",qp.ord,qp.num,sum);
        if(B==en)en=qp.ord;
        if(A==be)be=qp.ord;
        q.push((cyc){(sum>0?sum:-sum),qp.ord,sum>0});
    }
    printf("%lld",ans);//开long long
    return 0;
}

时间: 2024-10-22 19:46:50

【BZOJ】3502 PA2012 Tanie linie的相关文章

【BZOJ3502/2288】PA2012 Tanie linie/【POJ Challenge】生日礼物 堆+链表(模拟费用流)

[BZOJ3502]PA2012 Tanie linie Description n个数字,求不相交的总和最大的最多k个连续子序列. 1<= k<= N<= 1000000. Sample Input 5 2 7 -3 4 -9 5 Sample Output 13 题解:跟1150和2151差不多. 我们先做一些预处理,因为连续的正数和连续的负数一定是要么都选要么都不选,所以可以将它们合并成一个数,同时区间中的零以及左右两端的负数没有意义,可以将它们删掉.然后我们得到的序列就变成:正-

【BZOJ】3319: 黑白树

http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种:1.查询u到根的第一条黑边的编号.2.将u到v的路径全部染成黑色 #include <cstdio> #include <cstring> #include <cmath> #include <string> #include <iostream>

【bzoj】4538: [Hnoi2016]网络

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4538 维护一个数据结构支持对于一颗树的操作,需要支持: 1.对于树上的一条路径上的每个点上放一个值. 2.撤销某次操作的路劲放. 3.查询除了经过这个点的路径的最大值. 往一个路径上丢值相当于往不经过条路径的所有点上丢值. 用一个树链剖分即可维护,对于操作区间取反. 直接查询单点最大值即可. 为了维护单点最大值,线段树中的每一个点对应两个堆,用于维护插入誉删除. 防止爆空间,所以标记永久

【BZOJ】1821: [JSOI2010]Group 部落划分 Group(最小生成树+贪心)

http://www.lydsy.com:808/JudgeOnline/problem.php?id=1821 这题裸题. 本题要求最短距离最长,很明显,我们排序. 这里存在贪心,即我们把边权最小的全分给n个部落的内部,然后剩下的边最小的就是答案. 将边权较小的边分给k个部落,用并查集生成最小树,使得内部的边总是小于连到外部的边.然后分剩下k个点即可,剩下的k个点的那条边一定是部落之间最小的且最长的边. #include <cstdio> #include <cstring> #

【BZOJ】【3083】遥远的国度

树链剖分/dfs序 其实过了[BZOJ][4034][HAOI2015]T2以后就好搞了…… 链修改+子树查询+换根 其实静态树的换根直接树链剖分就可以搞了…… 因为其实只有一样变了:子树 如果root在x的子树中(以1为根dfs的时候),那么现在x的子树就变成了整个dfs序中,除去含有root的那个子树的剩下的部分,画个图大概就是这样:(红色部分为现在的子树) 我们发现,这种子树由于换根而产生变化的情况,仅当在以1为根时的树中,x是new_root的祖先时发生,那么我们判断这种情况是否发生只需

【BZOJ】2301: [HAOI2011]Problem b(莫比乌斯+分块)

http://www.lydsy.com/JudgeOnline/problem.php?id=2301 和这题不是差不多的嘛--[BZOJ]1101: [POI2007]Zap(莫比乌斯+分块) 唯一不同的地方是这题有下界.. 下界除以k的时候取上界,然后分块的时候因为有4个数,所以要分成4块来搞.. 然后就行了.. #include <cstdio> #include <cstring> #include <cmath> #include <string>

【BZOJ】1146: [CTSC2008]网络管理Network(树链剖分+线段树套平衡树+二分 / dfs序+树状数组+主席树)

第一种做法(时间太感人): 这题我真的逗了,调了一下午,疯狂造数据,始终找不到错. 后来发现自己sb了,更新那里没有打id,直接套上u了.我.... 调了一下午啊!一下午的时光啊!本来说好中午A掉去学习第二种做法,噗 好吧,现在第一种做法是hld+seg+bst+二分,常数巨大,log^4级别,目前只会这种. 树剖后仍然用线段树维护dfs序区间,然后在每个区间建一颗平衡树,我用treap,(这题找最大啊,,,囧,并且要注意,这里的rank是比他大的数量,so,我们在二分时判断要判断一个范围,即要

最大权闭合图 &amp;&amp; 【BZOJ】1497: [NOI2006]最大获利

最大权闭合图详细请看胡伯涛论文<最小割模型在信息学竞赛中的应用>,我在这里截图它的定义以及一些东西. 假设我们有一个图,点集的出边都是连到点集的,那么称这个为闭合图.现在这些点集都有个权值,我们要选择某个闭合图使得权值最大. 回到此题: 最大获利这一题,我们可以这样看,用户群和中转站为带权的点集,用户群的权为收益,中转站的权为负的成本,即0-成本,用户群向其中两个中转站连弧,那么这个就是一个闭合图. 我们要求这个闭合图的权值和最大,即最大收益,那么就能转移到上面的求最大权闭合图的做法去了. 做

【BZOJ】1012: [JSOI2008]最大数maxnumber(树状数组+区间最值)

http://www.lydsy.com/JudgeOnline/problem.php?id=1012 树状数组原来我只懂得sum和add的操作,今天才知道可以有求区间最值的操作,我学习了一下写了个,1a了. 区间最值其实和区间求和差不多,就是将sum数组的含义转移到max,然后通过特定的区间更新max. 在区间求和中,当我们维护max[i]的时候,要找到它前面所有的max[j]来更新,在这里因为是树状数组,所以可以降成一个log级,画图可知,max[i]需要的max只有max[i-2^0],