【洛谷P2912】[USACO08OCT]牧场散步Pasture Walking

题目描述

The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures also conveniently numbered 1..N. Most conveniently of all, cow i is grazing in pasture i.

Some pairs of pastures are connected by one of N-1 bidirectional walkways that the cows can traverse. Walkway i connects pastures A_i and B_i (1 <= A_i <= N; 1 <= B_i <= N) and has a length of L_i (1 <= L_i <= 10,000).

The walkways are set up in such a way that between any two distinct pastures, there is exactly one path of walkways that travels between them. Thus, the walkways form a tree.

The cows are very social and wish to visit each other often. Ever in a hurry, they want you to help them schedule their visits by computing the lengths of the paths between 1 <= L_i <= 10,000 pairs of pastures (each pair given as a query p1,p2 (1 <= p1 <= N; 1 <= p2 <= N).

POINTS: 200

有N(2<=N<=1000)头奶牛,编号为1到W,它们正在同样编号为1到N的牧场上行走.为了方 便,我们假设编号为i的牛恰好在第i号牧场上.

有一些牧场间每两个牧场用一条双向道路相连,道路总共有N - 1条,奶牛可以在这些道路 上行走.第i条道路把第Ai个牧场和第Bi个牧场连了起来(1 <= A_i <= N; 1 <= B_i <= N),而它的长度 是 1 <= L_i <= 10,000.在任意两个牧场间,有且仅有一条由若干道路组成的路径相连.也就是说,所有的道路构成了一棵树.

奶牛们十分希望经常互相见面.它们十分着急,所以希望你帮助它们计划它们的行程,你只 需要计算出Q(1 < Q < 1000)对点之间的路径长度?每对点以一个询问p1,p2 (1 <= p1 <= N; 1 <= p2 <= N). 的形式给出.

输入输出格式

输入格式:

  • Line 1: Two space-separated integers: N and Q
  • Lines 2..N: Line i+1 contains three space-separated integers: A_i, B_i, and L_i
  • Lines N+1..N+Q: Each line contains two space-separated integers representing two distinct pastures between which the cows wish to travel: p1 and p2

输出格式:

  • Lines 1..Q: Line i contains the length of the path between the two pastures in query i.

输入输出样例

输入样例#1:

4 2
2 1 2
4 3 2
1 4 3
1 2
3 2

输出样例#1:

2
7

说明

Query 1: The walkway between pastures 1 and 2 has length 2.

Query 2: Travel through the walkway between pastures 3 and 4, then the one between 4 and 1, and finally the one between 1 and 2, for a total length of 7.

题解:

LCA问题,dis[x]表示x到根节点的距离,设x,y的最近公共祖先为z,则x,y之间的距离为dis[x]+dis[y]-2*dis[z]。

倍增:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1000+5;
inline int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<‘0‘||ch>‘9‘) {if(ch==‘-‘)f=-1; ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘; ch=getchar();}
    return x*f;
}
int n,m,num;
int head[maxn],f[maxn][20],dep[maxn],dis[maxn];
bool vis[maxn];
struct node
{
    int next,to,dist;
}e[maxn<<1];
inline void add(int from,int to,int dist)
{
    e[++num].next=head[from];
    e[num].to=to;
    e[num].dist=dist;
    head[from]=num;
}
inline void dfs(int x,int d)
{
    vis[x]=1;dep[x]=d;
    for(int i=head[x];i;i=e[i].next)
    {
        int to=e[i].to;
        if(!vis[to])
        {
            dis[to]=dis[x]+e[i].dist;
            f[to][0]=x;
            dfs(to,d+1);
        }
    }
}
inline int lca(int a,int b)
{
    if(dep[a]<dep[b]){int t=a;a=b;b=t;}
    int d=dep[a]-dep[b];
    for(int i=0;i<=10;i++)
    if(d&(1<<i)) a=f[a][i];
    if(a==b) return a;
    for(int i=10;i>=0;i--)
    if(f[a][i]!=f[b][i])
    {
        a=f[a][i];
        b=f[b][i];
    }
    return f[a][0];
}
int main()
{
    n=read();m=read();
    for(int i=1;i<n;i++)
    {
        int x,y,z;
        x=read();y=read();z=read();
        add(x,y,z);add(y,x,z);
    }
    dfs(1,1);
    for(int j=1;j<=10;j++)
    for(int i=1;i<=n;i++)
    f[i][j]=f[f[i][j-1]][j-1];
    for(int i=1;i<=m;i++)
    {
        int a,b;
        a=read();b=read();
        printf("%d\n",dis[a]+dis[b]-(dis[lca(a,b)]<<1));
    }
    return 0;
}

tarjan算法:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1000+5;
inline int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<‘0‘||ch>‘9‘) {if(ch==‘-‘)f=-1; ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘; ch=getchar();}
    return x*f;
}
int n,m,num,qnum;
int head[maxn],qhead[maxn],father[maxn],a[maxn][3],dis[maxn];
bool vis[maxn];
struct node
{
    int next,to,v;
}e[maxn<<1],q[maxn<<1];
void add(int from,int to,int v)
{
    e[++num].next=head[from];
    e[num].to=to;
    e[num].v=v;
    head[from]=num;
}
void qadd(int from,int to,int v)
{
    q[++qnum].next=qhead[from];
    q[qnum].to=to;
    q[qnum].v=v;
    qhead[from]=qnum;
}
int find(int x)
{
    if(x!=father[x]) father[x]=find(father[x]);
    return father[x];
}
void merge(int x,int y)
{
    int r1=find(x);
    int r2=find(y);
    father[r1]=r2;
}
void tarjan(int x)
{
    vis[x]=1;
    for(int i=qhead[x];i;i=q[i].next)
    {
        int to=q[i].to,v=q[i].v;
        if(vis[to]) a[v][2]=find(to);
    }
    for(int i=head[x];i;i=e[i].next)
    {
        int to=e[i].to;
        if(!vis[to])
        {
            dis[to]=dis[x]+e[i].v;
            tarjan(to);
            merge(to,x);
        }
    }
}
int main()
{
    n=read();m=read();
    for(int i=1;i<=n;i++) father[i]=i;
    for(int i=1;i<n;i++)
    {
        int x,y,z;
        x=read();y=read();z=read();
        add(x,y,z);add(y,x,z);
    }
    for(int i=1;i<=m;i++)
    {
        a[i][0]=read();a[i][1]=read();
        qadd(a[i][0],a[i][1],i);
        qadd(a[i][1],a[i][0],i);
    }
    dis[1]=0;
    tarjan(1);
    for(int i=1;i<=m;i++)
    printf("%d\n",dis[a[i][0]]+dis[a[i][1]]-(dis[a[i][2]]<<1));
    return 0;
}
    

时间: 2024-12-09 18:14:39

【洛谷P2912】[USACO08OCT]牧场散步Pasture Walking的相关文章

洛谷 P2912 [USACO08OCT]牧场散步Pasture Walking

题目描述 The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures also conveniently numbered 1..N. Most conveniently of all, cow i is grazing in pasture i. Some pairs of pastures are connected by one of N-1 bidirectional

P2912 [USACO08OCT]牧场散步Pasture Walking

题目描述 The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures also conveniently numbered 1..N. Most conveniently of all, cow i is grazing in pasture i. Some pairs of pastures are connected by one of N-1 bidirectional

[USACO08OCT]牧场散步Pasture Walking

[USACO08OCT]牧场散步Pasture Walking 题目描述 The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures also conveniently numbered 1..N. Most conveniently of all, cow i is grazing in pasture i. Some pairs of pastures are connec

[luoguP2912] [USACO08OCT]牧场散步Pasture Walking(lca)

传送门 水题. 直接倍增求lca. x到y的距离为dis[x] + dis[y] - 2 * dis[lca(x, y)] ——代码 1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 #define MAXN 20002 5 6 using namespace std; 7 8 int n, q, cnt; 9 int head[MAXN], to[MAXN], next[MAXN], va

[USACO08OCT]牧场散步Pasture Walking (LCA) (乱搞)

题面传送门我太懒了所以吃掉题面 题解 可以发现如果两点不在一条链上的话,那么他们的最短路径一定会经过LCA. 所以可以维护一下每个点到树根的距离,然后大力前缀和乱搞就好了. #include <bits/stdc++.h> const int max_n=1e4+5; int N,M,cnt; int depth[max_n],father[15][max_n],lg2[max_n],first_edge[max_n],dis[max_n]; struct edge { int to,w,ne

洛谷P1294 高手去散步

洛谷1294 高手去散步 题目背景 高手最近谈恋爱了.不过是单相思.“即使是单相思,也是完整的爱情”,高手从未放弃对它的追求.今天,这个阳光明媚的早晨,太阳从西边缓缓升起.于是它找到高手,希望在晨读开始之前和高手一起在鳌头山上一起散步.高手当然不会放弃这次梦寐以求的机会,他已经准备好了一切. 题目描述 鳌头山上有n个观景点,观景点两两之间有游步道共m条.高手的那个它,不喜欢太刺激的过程,因此那些没有路的观景点高手是不会选择去的.另外,她也不喜欢去同一个观景点一次以上.而高手想让他们在一起的路程最

洛谷P1284 三角形牧场

题目描述 和所有人一样,奶牛喜欢变化.它们正在设想新造型的牧场.奶牛建筑师Hei想建造围有漂亮白色栅栏的三角形牧场.她拥有N(3≤N≤40)块木板,每块的长度Li(1≤Li≤40)都是整数,她想用所有的木板围成一个三角形使得牧场面积最大. 请帮助Hei小姐构造这样的牧场,并计算出这个最大牧场的面积. 输入输出格式 输入格式: 第1行:一个整数N 第2..N+1行:每行包含一个整数,即是木板长度. 输出格式: 仅一个整数:最大牧场面积乘以100然后舍尾的结果.如果无法构建,输出-1. 输入输出样例

洛谷 P1284 三角形牧场WD

P1284 三角形牧场 题目描述 和所有人一样,奶牛喜欢变化.它们正在设想新造型的牧场.奶牛建筑师Hei想建造围有漂亮白色栅栏的三角形牧场.她拥有N(3≤N≤40)块木板,每块的长度Li(1≤Li≤40)都是整数,她想用所有的木板围成一个三角形使得牧场面积最大. 请帮助Hei小姐构造这样的牧场,并计算出这个最大牧场的面积. 输入输出格式 输入格式: 第1行:一个整数N 第2..N+1行:每行包含一个整数,即是木板长度. 输出格式: 仅一个整数:最大牧场面积乘以100然后舍尾的结果.如果无法构建,

洛谷1284 三角形牧场

本题地址:http://www.luogu.org/problem/show?pid=1284 题目描述 和所有人一样,奶牛喜欢变化.它们正在设想新造型的牧场.奶牛建筑师Hei想建造围有漂亮白色栅栏的三角形牧场.她拥有N(3≤N≤40)块木板,每块的长度Li(1≤Li≤40)都是整数,她想用所有的木板围成一个三角形使得牧场面积最大.     请帮助Hei小姐构造这样的牧场,并计算出这个最大牧场的面积. 输入输出格式 输入格式: 第1行:一个整数N 第2..N+1行:每行包含一个整数,即是木板长度