拓扑排序 - 并查集 - Rank of Tetris

Description

自从Lele开发了Rating系统,他的Tetris事业更是如虎添翼,不久他遍把这个游戏推向了全球。

为了更好的符合那些爱好者的喜好,Lele又想了一个新点子:他将制作一个全球Tetris高手排行榜,定时更新,名堂要比福布斯富豪榜还响。关于如何排名,这个不用说都知道是根据Rating从高到低来排,如果两个人具有相同的Rating,那就按这几个人的RP从高到低来排。

终于,Lele要开始行动了,对N个人进行排名。为了方便起见,每个人都已经被编号,分别从0到N-1,并且编号越大,RP就越高。 
同时Lele从狗仔队里取得一些(M个)关于Rating的信息。这些信息可能有三种情况,分别是"A > B","A = B","A < B",分别表示A的Rating高于B,等于B,小于B。

现在Lele并不是让你来帮他制作这个高手榜,他只是想知道,根据这些信息是否能够确定出这个高手榜,是的话就输出"OK"。否则就请你判断出错的原因,到底是因为信息不完全(输出"UNCERTAIN"),还是因为这些信息中包含冲突(输出"CONFLICT")。 
注意,如果信息中同时包含冲突且信息不完全,就输出"CONFLICT"。

Input

本题目包含多组测试,请处理到文件结束。 
每组测试第一行包含两个整数N,M(0<=N<=10000,0<=M<=20000),分别表示要排名的人数以及得到的关系数。 
接下来有M行,分别表示这些关系

Output

对于每组测试,在一行里按题目要求输出

Sample Input

3 3
0 > 1
1 < 2
0 > 2
4 4
1 = 2
1 > 3
2 > 0
0 > 1
3 3
1 > 0
1 > 2
2 < 1

Sample Output

OK
CONFLICT
UNCERTAIN

--------------------------------------------------我是分割线^_^-------------------------------------------------------------

这道题也是WA不少次了,我是事后看题解才反应过来,很无语的一道题,要先全部接受输入把等号处理掉,我之前一边输入一边处理等号,TLE到凌晨才发现= =,主要就是先用并查集把相等的元素全部合并然后当作一个数处理,然后就是一个拓扑排序。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<vector>
#include<queue>
using namespace std;

#define Int __int64
#define INF 0x3f3f3f3f

const int MAXN = 22222;
int team[MAXN];
int head[MAXN];
int point[MAXN];
int nxt[MAXN];
int edgecnt;
int ingrade[MAXN];
int n, m;
int road[MAXN];
int sum;
int A[MAXN], B[MAXN];
char op[MAXN];

void ini() {
    memset(head, -1, sizeof(head));
    memset(ingrade, 0, sizeof(ingrade));
    edgecnt = 0;
    sum = n;
    for (int i = 0; i < n; i++) {
        road[i] = i;
    }
}

void Add_Edge(int u, int v) {
    nxt[edgecnt] = head[u];
    point[edgecnt] = v;
    head[u] = edgecnt++;
}

int FindRoot(int rt) {
    return road[rt] == rt ? rt : (road[rt] = FindRoot(road[rt]));
}

int main()
{
    //freopen("input.txt", "r", stdin);
    while (scanf("%d %d\n", &n, &m) != EOF) {
        ini();
        for (int i = 0; i < m; i++) {
            scanf("%d %c %d", &A[i], &op[i], &B[i]);
            if (op[i] == ‘=‘) {
                int root1 = FindRoot(A[i]);
                int root2 = FindRoot(B[i]);
                if (root1 != root2) {
                    road[root2] = root1;
                    sum--;//记得合并之后减一,这才是当前的集合个数
                }
            }
        }
        for (int i = 0; i < m; i++) {
            if (op[i] == ‘=‘) {
                continue;
            }
            int a = A[i];
            int b = B[i];
            a = FindRoot(a);
            b = FindRoot(b);
            if (op[i] == ‘>‘) {
                Add_Edge(a, b);
                ingrade[b]++;
            } else {
                Add_Edge(b, a);
                ingrade[a]++;
            }
        }
        queue<int>q;
        while (!q.empty()) q.pop();

        for (int i = 0; i < n; i++) {
            if (ingrade[i] == 0 && FindRoot(i) == i) q.push(i);//注意此时的road[i]的根节点可能未更新,因此查询顺便更新
        }
        bool flag = false;
        while (!q.empty()) {
            if (q.size() > 1) flag = true;//如果入度为零的点不止一个,那肯定有多组解,答案不明
            int now = q.front();
            q.pop();
            sum--;//这里的处理就是为了下面判断还有木有边剩下来,如果有,肯定就是有环啦!
            for (int i = head[now]; i != -1; i = nxt[i]) {
                int v = point[i];
                ingrade[v]--;
                if (!ingrade[v]) q.push(v);
            }
        }
        if (sum > 0) {
            printf("CONFLICT\n");
        } else if (flag) {
            printf("UNCERTAIN\n");
        } else {
            printf("OK\n");
        }

    }
    return 0;
}
 
时间: 2024-11-05 11:40:03

拓扑排序 - 并查集 - Rank of Tetris的相关文章

hdu 1811 Rank of Tetris (拓扑排序+并查集)

Rank of Tetris Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4931 Accepted Submission(s): 1359 Problem Description自从Lele开发了Rating系统,他的Tetris事业更是如虎添翼,不久他遍把这个游戏推向了全球. 为了更好的符合那些爱好者的喜好,Lele又想了一个新点子:他

hdu1811 Rank of Tetris(拓扑排序+并查集)

Rank of Tetris Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 6920    Accepted Submission(s): 1947 Problem Description 自从Lele开发了Rating系统,他的Tetris事业更是如虎添翼,不久他遍把这个游戏推向了全球. 为了更好的符合那些爱好者的喜好,Lele又想

hdu 1811 Rank of Tetris(拓扑排序+并查集)

1 #include "cstdio" 2 #include "iostream" 3 #include "cstring" 4 #include "vector" 5 #include "queue" 6 using namespace std; 7 const int N = 10005; 8 int n, m, t; 9 int fa[N]; 10 int rank[N]; 11 int X[2*N]

HDU 1811 Rank of Tetris 拓扑排序+并查集

Rank of Tetris Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Description 自从Lele开发了Rating系统,他的Tetris事业更是如虎添翼,不久他遍把这个游戏推向了全球. 为了更好的符合那些爱好者的喜好,Lele又想了一个新点子:他将制作一个全球Tetris高手排行榜,定时更新,名堂要比福布斯富豪榜还响.关于如何排名,这个不用说都知道是根据Rating从高到低

hdu 1811(拓扑排序+并查集)

Rank of Tetris Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 7961    Accepted Submission(s): 2266 Problem Description 自从Lele开发了Rating系统,他的Tetris事业更是如虎添翼,不久他遍把这个游戏推向了全球. 为 了更好的符合那些爱好者的喜好,Lele又想

LA 4255 (拓扑排序 并查集) Guess

设这个序列的前缀和为Si(0 <= i <= n),S0 = 0 每一个符号对应两个前缀和的大小关系,然后根据这个关系拓扑排序一下. 还要注意一下前缀和相等的情况,所以用一个并查集来查询. 1 #include <cstdio> 2 #include <cstring> 3 4 const int maxn = 15; 5 int n; 6 int G[maxn][maxn]; 7 char s[100]; 8 int sum[maxn], a[maxn]; 9 10

2015 ACM/ICPC Asia Regional Changchun Online Pro 1002 (拓扑排序+并查集)

Ponds Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 0    Accepted Submission(s): 0 Problem Description Betty owns a lot of ponds, some of them are connected with other ponds by pipes, and th

HDU 1811 Rank of Tetris 【拓扑排序 + 并查集】

自从Lele开发了Rating系统,他的Tetris事业更是如虎添翼,不久他遍把这个游戏推向了全球. 为了更好的符合那些爱好者的喜好,Lele又想了一个新点子:他将制作一个全球Tetris高手排行榜,定时更新,名堂要比福布斯富豪榜还响.关于如何排名,这个不用说都知道是根据Rating从高到低来排,如果两个人具有相同的Rating,那就按这几个人的RP从高到低来排. 终于,Lele要开始行动了,对N个人进行排名.为了方便起见,每个人都已经被编号,分别从0到N-1,并且编号越大,RP就越高. 同时L

(拓扑排序+并查集)HDU - 1811 Rank of Tetris

原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1811 题意:有个很多关系,现在需要产生一个名单,有的人比有的人牛逼,有的人没有的人牛逼,有的人一样牛逼,现在需要通过牛逼程度排名,如果1比2牛逼,1的排名就比2前,如果1和2一样牛逼,就比两个人的人品,人品好的人排前面. 现在有三种情况: 1.正确 2.矛盾 3.无法确定 分析: 这里其他方面还是比较简单.首先确定三种情况的发生条件: 矛盾--存在环,也就是在toposort之后,没有把所有的点全都