Description
Give you three sequences of numbers A, B, C, then we give you a number X. Now you need to calculate if you can find the three numbers Ai, Bj, Ck, which satisfy the formula Ai+Bj+Ck = X.
Input
There are many cases. Every data case is described as followed: In the first line there are three integers L, N, M, in the second line there are L integers represent the sequence A, in the third line there are N integers represent the sequences B, in the forth line there are M integers represent the sequence C. In the fifth line there is an integer S represents there are S integers X to be calculated. 1<=L, N, M<=500, 1<=S<=1000. all the integers are 32-integers.
Output
For each case, firstly you have to print the case number as the form "Case d:", then for the S queries, you calculate if the formula can be satisfied or not. If satisfied, you print "YES", otherwise print "NO".
Sample Input
3 3 3
1 2 3
1 2 3
1 2 3
3
1
4
10
Sample Output
Case 1:
NO
YES
NO
AC代码:
#include <iostream> #include<cstdio> #include<cmath> #include<algorithm>//排序的头文件 using namespace std; int a[501],b[501],c[501],d[501*501];//合并数组的范围应为之前数组的平方 int main() { int l,n,m,i,j,k,p,y,s,x; s=0; while(scanf("%d%d%d",&l,&n,&m)!=EOF) { for(i=0;i<l;i++) scanf("%d",&a[i]); for(i=0;i<n;i++) scanf("%d",&b[i]); for(i=0;i<m;i++) scanf("%d",&c[i]); sort(c,c+m);//将数组进行排序 int q=0; for(j=0;j<n;j++) for(k=0;k<m;k++) d[q++]=a[j]+b[k];//将前两个数组求和,合并成为一个数组 sort(d,d+q); scanf("%d",&p); printf("Case %d:\n",++s);//此处少写了换行符 for(i=0;i<p;i++) { scanf("%d",&x); int flag=0;//标记 for(k=0;k<m;k++) { y=x-c[k]; int le,r,mid; le=0;//左端点 r=q-1;//右端点,刚写错了,将区间的范围缩小了 while(le<=r)//二分法核心代码 { mid=(le+r)/2;//中区间 if(y==d[mid]) { flag=1; break;//终止判断 } if (d[mid]<y) le=mid+1; else r=mid-1; } if(flag==1) break;//如果有一个合法的y就结束循环 } if(flag) printf("YES\n"); else printf("NO\n"); } } return 0; }
分析:就是给你ABC三个数,这三个数每一个都有很多的取值,现在给你一个x让你判断任意的ABC相加是否等于X(有多组值),若等于就YES,否则就NO,一开始我想用四个for循环来写但是后来想了一下觉得太繁琐而且又容易超时,于是找到了二分法来写,简单易懂。
具体步骤:将前两个数组相加后的值赋给一个新的数组,然后用x的值减去另外一个数组的值,判断两者是否相等。