算法基础 - 单源点最短路径SPFA

SPFA是非常简单的最短路径算法,思想就是从起点开始,进行宽度优先搜索,不断松弛S点到其他相邻点的距离。如果松弛了点B,则把点B放到队列里。假如点B已经在队列里了,就不要放了,判断在不在队列可以用个数组来表示。

引用一段hihocoder上的解释:

构造一个队列,最开始队列里只有(S, 0)——表示当前处于点S,从点S到达该点的距离为0,然后每次从队首取出一个节点(i, L)——表示当前处于点i,从点S到达该点的距离为L,接下来遍历所有从这个节点出发的边(i, j, l)——表示i和j之间有一条长度为l的边,将(j, L+l)加入到队尾,最后看所有遍历的(T, X)节点中X的最小值就是答案咯~”小Ho对于搜索已经是熟稔于心,张口便道。

SPFA算法呢,其实某种意义上就是宽度优先搜索的优化——如果你在尝试将(p, q)加入到队尾的时候,发现队列中已经存在一个(p, q‘)了,那么你就可以比较q和q’:如果q>=q‘,那么(p, q)这个节点实际上是没有继续搜索下去的必要的——算是一种最优化剪枝吧。而如果q < q‘,那么(p, q‘)也是没有必要继续搜索下去的——但是它已经存在于队列里了怎么办呢?很简单,将队列中的(p, q‘)改成(p, q)就可以了!”

“那我该怎么知道队列中是不是存在一个(p, q‘)呢?”

维护一个position[1..N]的数组就可以了,如果不在队列里就是-1,否则就是所在的位置!”

“所以说这本质上就是宽度优先搜索的剪枝咯?”小Ho问道。

小Hi笑道:“怎么可能!SPFA算法其实是BELLMAN-FORD算法的一种优化版本,只不过在成型之后可以被理解成为宽度优先搜索的!这个问题,我们会在之后好好讲一讲的!

代码如下:

#include <iostream>
#include <cstring>
#include <string>
#include <queue>

using namespace std;

struct Node{
    int val;
    int len;
    Node * next;
    Node():val(-1),len(-1), next(NULL){}
    Node(int x, int le): val(x), len(le), next(NULL){}
};

long long SPFA(Node node[], int M, int S, int T){
    queue<int> st;
    st.push(S);
    int flag[M+5];
    long long dist[M+5];
    for(int i = 0; i < M+5; i++){
        flag[i] = 0;
        dist[i] = -1;
    }
    dist[S] = 0;
    flag[S] = 1;
    while(!st.empty()){
        int cur = st.front();
        st.pop();
        flag[cur] = 0;
        Node * temp = node[cur].next;
        while(temp != NULL){
            if(dist[temp->val] == -1 || dist[temp->val] > (dist[cur]+temp->len)){
                dist[temp->val] = dist[cur]+temp->len;
                if(flag[temp->val] == 0){
                    st.push(temp->val);
                    flag[temp->val] = 1;
                }
            }
            temp = temp->next;
        }
    }
    return dist[T];
}

int main(){
    int M,N,S,T;
    // M 顶点个数, N 边个数, S起点, T 终点
    while(cin>>M>>N>>S>>T){
        Node node[M+5];
        int st, en, le;
        for(int i = 0; i < N;i++){
            cin>>st>>en>>le;
            //st边起点 en边终点 le边长度
            Node * temp = new Node(en,le);
            temp->next = node[st].next;
            node[st].next = temp;

            /*如果是无向图加上这三条语句
            temp = new Node(st,le);
            temp->next = node[en].next;
            node[en].next = temp;
            */
        }
        cout<<SPFA(node, M, S, T)<<endl;
    }
}

大致如上

时间: 2024-11-03 10:34:56

算法基础 - 单源点最短路径SPFA的相关文章

Bellman-Ford算法——求解单源点最短路径问题

Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好好思考),而Dijkstra算法只能处理边权非负的问题,因此 Bellman-Ford算法的适用面要广泛一些.但是,原始的Bellman-Ford算法时间复杂度为O(VE),比Dijkstra算法的时间复杂度高,所以常常被众多的大学算法教科书所忽略,就连经典的<算法导论>也只介绍了基本的Bellm

算法基础 - 多源点最短路径(Floyd算法)

Floyd算法 Floyd算法又称为插点法,是一种用于寻找给定的加权图中多源点之间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 思路 路径矩阵 通过一个图的权值矩阵求出它的每两点间的最短路径矩阵. 从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1):又用同样地公式由D(1)构造出D(2):--:最后又用同样的公式由D(n-1)构造出矩阵D(n).矩阵D(n

单源点最短路径的Dijkstra算法

在带权图(网)里,点A到点B所有路径中边的权值之和为最短的那一条路径,称为A,B两点之间的最短路径;并称路径上的第一个顶点为源点(Source),最后一个顶点为终点(Destination).在无权图中,最短路径则是两点之间经历的边数最少的路径.实际上,只要把无权图上的每条边都看成是权值为1的边,那么无权图和带权图的最短路径是一致的. 给定一个带权有向图G=(V,E),指定图G中的某一个顶点的V为源点,求出从V到其他各顶点之间的最短路径,这个问题称为单源点最短路径问题. 迪杰斯特拉(Dijkst

Dijkstra算法求单源最短路径

1.最短路径 在一个连通图中,从一个顶点到另一个顶点间可能存在多条路径,而每条路径的边数并不一定相同.如果是一个带权图,那么路径长度为路径上各边的权值的总和.两个顶点间路径长度最短的那条路径称为两个顶点间的最短路径,其路径长度称为最短路径长度. 最短路径在实际中有重要的应用价值.如用顶点表示城市,边表示两城市之间的道路,边上的权值表示两城市之间的距离.那么城市A到城市B连通的情况下,哪条路径距离最短呢,这样的问题可以归结为最短路径问题. 求最短路径常见的算法有Dijkstra算法和Floyd算法

GraphX中Pregel单源点最短路径(转)

原文链接:GraphX中Pregel单源点最短路径 GraphX中的单源点最短路径例子,使用的是类Pregel的方式. 核心部分是三个函数: 1.节点处理消息的函数  vprog: (VertexId, VD, A) => VD (节点id,节点属性,消息) => 节点属性 2.节点发送消息的函数 sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId,A)]   (边元组) => Iterator[(目标节点id,消息)] 3.消息合

数据结构与算法问题 单源最短路径 浙大OJ

题目描述: 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的. 输入: 输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p.最后一行是两个数 s,t;起点s,终点t.n和m为0时输入结束. (1<n<=1000, 0<m<100000, s != t) 输出: 输出 一行有两个数, 最短距离及其花费. 样例输入: 3 2

luogu P3371 &amp; P4779 ---单源最短路径spfa &amp; 最大堆优化Dijkstra

P3371 [模板]单源最短路径(弱化版) 题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度. 输入输出格式 输入格式: 第一行包含三个整数N.M.S,分别表示点的个数.有向边的个数.出发点的编号. 接下来M行每行包含三个整数Fi.Gi.Wi,分别表示第i条有向边的出发点.目标点和长度. 输出格式: 一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i

Til the Cows Come Home(poj 2387 Dijkstra算法(单源最短路径))

Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 32824   Accepted: 11098 Description Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessi

算法导论--单源最短路径问题(Dijkstra算法)

转载请注明出处:勿在浮沙筑高台http://blog.csdn.net/luoshixian099/article/details/51918844 单源最短路径是指:给定源顶点s∈V到分别到其他顶点v∈V?{s}的最短路径的问题. Dijkstra算法采用贪心策略:按路径长度递增的顺序,逐个产生各顶点的最短路径.算法过程中需要维护一个顶点集S,此顶点集保存已经找到最短路径的顶点.还需要维护一个距离数组dist, dist[i]表示第i个顶点与源结点s的距离长度. Dijkstra算法思路: S