信息检索和自然语言处理 IR&NLP howto

课程:

6.891 (Fall 2003): Machine Learning Approaches for Natural Language Processing

http://www.ai.mit.edu/courses/6.891-nlp/

CS 276 / LING 286 Information Retrieval and Web Search Spring 2012

http://www.stanford.edu/class/cs276/index.html

资源:

Information Retrieval Resources

http://nlp.stanford.edu/IR-book/information-retrieval.html

Statistical natural language processing and corpus-based computational linguistics: An annotated list of resources

http://www-nlp.stanford.edu/links/statnlp.html

Machine Learning for Natural Language Processing (ML-for-NLP)

https://wiki.inf.ed.ac.uk/MLforNLP

NLTK 2.0 documentation

http://nltk.org/

Natural Language Processing with Python
--- Analyzing Text with the Natural Language Toolkit

http://nltk.org/book/

PYTHON自然语言处理中文翻译 NLTK Natural Language Processing with Python 中文版.pdf

http://vdisk.weibo.com/s/4ffue/1334656530

Project Gutenberg - free ebooks

http://www.gutenberg.org/

原文地址:https://www.cnblogs.com/yaoyaohust/p/10228925.html

时间: 2024-10-05 21:38:24

信息检索和自然语言处理 IR&NLP howto的相关文章

利用Tensorflow进行自然语言处理(NLP)系列之一Word2Vec

写在前面的话(可略过): 一直想写下.整理下利用Tensorflow或Keras工具进行自然语言处理(NLP)方面的文章,对比和纠结了一段时间,发现博众家之长不如静下心来一步一个脚印地去看一本书来得更实在,虽然慢但是心里相对踏实些.近期刚把Thushan Ganegedara写的<Natural Language Processing with TensorFlow>(2018年5月第一次出版),目前没看到中文版.讲真,看原版书确实很耗费精力,但原版书的好处是可以原汁原味地探索.写博文的过程中

聊天机器人(chatbot)终极指南:自然语言处理(NLP)和深度机器学习(Deep Machine Learning)

在过去的几个月中,我一直在收集自然语言处理(NLP)以及如何将NLP和深度学习(Deep Learning)应用到聊天机器人(Chatbots)方面的最好的资料. 时不时地我会发现一个出色的资源,因此我很快就开始把这些资源编制成列表. 不久,我就发现自己开始与bot开发人员和bot社区的其他人共享这份清单以及一些非常有用的文章了. 在这个过程中,我的名单变成了一个指南,经过一些好友的敦促和鼓励,我决定和大家分享这个指南,或许是一个精简的版本 - 由于长度的原因. 这个指南主要基于Denny Br

初学者如何查阅自然语言处理(NLP)领域学术资料

原文地址 http://blog.sina.com.cn/s/blog_574a437f01019poo.html 昨天实验室一位刚进组的同学发邮件来问我如何查找学术论文,这让我想起自己刚读研究生时茫然四顾的情形:看着学长们高谈阔论领域动态,却不知如何入门.经过研究生几年的耳濡目染,现在终于能自信地知道去哪儿了解最新科研动态了.我想这可能是初学者们共通的困惑,与其只告诉一个人知道,不如将这些Folk Knowledge写下来,来减少更多人的麻烦吧.当然,这个总结不过是一家之谈,只盼有人能从中获得

自然语言处理(NLP)知识结构总结

自然语言处理知识太庞大了,网上也都是一些零零散散的知识,比如单独讲某些模型,也没有来龙去脉,学习起来较为困难,于是我自己总结了一份知识体系结构,不足之处,欢迎指正.内容来源主要参考黄志洪老师的自然语言处理课程.主要参考书为宗成庆老师的<统计自然语言处理>,虽然很多内容写的不清楚,但好像中文NLP书籍就这一本全一些,如果想看好的英文资料,可以到我的GitHub上下载:  http://github.com/lovesoft5/ml  下面直接开始正文: 一.自然语言处理概述           

自注意力机制(Self-attention Mechanism)——自然语言处理(NLP)

近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出.在2017年6月google机器翻译团队在arXiv上放出的<Attention is all you need>论文受到了大家广泛关注,自注意力(self-attention)机制开始成为神经网络attention的研究热点,在各个任务上也取得了不错的效果.对这篇论文中的self-attention以及一些相关工作进行了学习

自然语言处理资源NLP

转自:https://github.com/andrewt3000/DL4NLP Deep Learning for NLP resources State of the art resources for NLP sequence modeling tasks such as machine translation, image captioning, and dialog. My notes on neural networks, rnn, lstm Deep Learning for NL

自然语言处理(NLP)——语言模型预训练方法(ELMo、GPT和BERT)

1. 引言 在介绍论文之前,我将先简单介绍一些相关背景知识.首先是语言模型(Language Model),语言模型简单来说就是一串词序列的概率分布.具体来说,语言模型的作用是为一个长度为m的文本确定一个概率分布P,表示这段文本存在的可能性.在实践中,如果文本的长度较长,P(wi | w1, w2, . . . , wi−1)的估算会非常困难.因此,研究者们提出使用一个简化模型:n元模型(n-gram model).在 n 元模型中估算条件概率时,只需要对当前词的前n个词进行计算.在n元模型中,

智能语音助手的工作原理是?先了解自然语言处理(NLP)与自然语言生成(NLG)

语音助手越来越像人类了,与人类之间的交流不再是简单的你问我答,不少语音助手甚至能和人类进行深度交谈.在交流的背后,离不开自然语言处理(NLP)和自然语言生成(NLG)这两种基础技术.机器学习的这两个分支使得语音助手能够将人类语言转换为计算机命令,反之亦然. 这两种技术有什么差异?工作原理是什么?NLP vs NLG:了解基本差异 什么是NLP?NLP指在计算机读取语言时将文本转换为结构化数据的过程.简而言之,NLP是计算机的阅读语言.可以粗略地说,在NLP中,系统摄取人语,将其分解,分析,确定适

NLP资源整理(转)

1.       Google在研究博客中总结了他们2011年的精彩论文<Excellent Papers for 2011>,包括社会网络.机器学习.人机交互.信息检索.自然语言处理.多媒体.系统等各个领域,很精彩的论文集锦.http://googleresearch.blogspot.com/2012/03/excellent-papers-for-2011.html 或者zibuyu的BLOG http://blog.sina.com.cn/s/blog_574a437f0100y6zy