20172301 哈夫曼树实验报告

20172301 哈夫曼树实验报告

课程:《Java软件结构与数据结构》
班级: 1723
姓名: 郭恺
学号:20172301
实验教师:王志强老师
实验日期:2018年12月9日
必修/选修: 必修

一.实验内容

二.实验过程

  • 哈夫曼树
    哈夫曼(Haffman)树,也称最优二叉树,是指对于一组带有确定权值的叶结点、构造的具有最小带权路径长度的二叉树。
    二叉树的路径长度是指由根结点到所有的叶结点的路径长度之和。
    一棵二叉树要想它的带权路径长度最小,必须使权值越大的叶结点越靠近根结点,而权值越小的叶结点越远离根结点。

三.实验结果

四. 实验过程中遇到的问题和解决过程

  • 问题1:
    不能转换错误。
  • 问题1解决方案:应该是存放node,却存放了node.element。所以不能从String转到HuffmanTreeNode类型。

其他(感悟、思考等)

参考资料

原文地址:https://www.cnblogs.com/gk0625/p/10111723.html

时间: 2024-11-06 22:42:55

20172301 哈夫曼树实验报告的相关文章

赫夫曼编译码器实验报告

#include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #define MAX 100 #define MAXVALUE 10000 typedef struct{ char ch; int weight,flag; int parent,lchild,rchild; }HTNode; typedef struct{ char ch; int bit[MAX]; int

20172304 蓝墨云实验哈夫曼树

20172304 蓝墨云实验哈夫曼树 实验要求 设有字符集:S={a,b,c,d,e,f,g,h,i,j,k,l,m,n.o.p.q,r,s,t,u,v,w,x,y,z}. 给定一个包含26个英文字母的文件,统计每个字符出现的概率,根据计算的概率构造一颗哈夫曼树. 并完成对英文文件的编码和解码. 要求: (1) 准备一个包含26个英文字母的英文文件(可以不包含标点符号等),统计各个字符的概率 (2) 构造哈夫曼树 (3) 对英文文件进行编码,输出一个编码后的文件 (4) 对编码文件进行解码,输出

哈夫曼树的创建 实验报告

代码参考严蔚敏<数据结构> 1 #include<string.h> 2 #include<stdlib.h> 3 #include<stdio.h> 4 5 int m,s1,s2; 6 7 typedef struct 8 { 9 unsigned int weight; 10 unsigned int parent,lchild,rchild; 11 } HTNode,*HuffmanTree; //动态分配数组存储哈夫曼树 12 typedef ch

哈夫曼树的编码实验

Java哈夫曼编码实验--哈夫曼树的建立,编码与解码 建树,造树,编码,解码 一.哈夫曼树编码介绍 1.哈夫曼树: (1)定义:假设有n个权值{w1, w2, ..., wn},试构造一棵含有n个叶子结点的二叉树,每个叶子节点带权威wi,则其中带权路径长度WPL最小的二叉树叫做最优二叉树或者哈夫曼树. (2)特点:哈夫曼树中没有度为1的结点,故由n0 = n2+1以及m= n0+n1+n2,n1=0可推出m=2*n0-1,即一棵有n个叶子节点的哈夫曼树共有2n-1个节点. 2.哈夫曼编码步骤:

新学的代码:哈夫曼树的生成实验

// Haffman.cpp : Defines the entry point for the console application.// #include "stdafx.h"#include <stdio.h>#include <string.h>typedef char DataType; struct element  //结点定义{        DataType data;   float weight;//此字符的权值      int par

5678: 数据结构实验:哈夫曼树和编码

描述 当用 n 个结点(都做叶子结点且都有各自的权值)试图构建一棵树时,如果构建的这棵树的带权路径长度最小,称这棵树为“最优二叉树”,有时也叫“赫夫曼树”或者“哈夫曼树”. 现给定若干权值,请构建一棵哈夫曼树,并输出各个权值对应的哈夫曼编码长度. 哈夫曼树中的结点定义如下: //哈夫曼树结点结构 typedef struct { int weight;//结点权重 int parent, left, right;//父结点.左孩子.右孩子在数组中的位置下标 }HTNode, *HuffmanTr

哈夫曼树与哈夫曼编码

哈夫曼树与哈夫曼编码 术语: i)路径和路径长度 在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径. 路径中分支的数目称为路径长度.若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1. ii)结点的权及带权路径长度 若对树中的每个结点赋给一个有着某种含义的数值,则这个数值称为该结点的权. 结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积. iii)树的带权路径长度 树的带权路径长度:所有叶子结点的带权路径长度之和,记为WPL. 先了解一下

哈夫曼树+哈夫曼编码

前天acm实验课,老师教了几种排序,抓的一套题上有一个哈夫曼树的题,正好之前离散数学也讲过哈夫曼树,这里我就结合课本,写一篇关于哈夫曼树的博客. 哈夫曼树的介绍 Huffman Tree,中文名是哈夫曼树或霍夫曼树,它是最优二叉树. 定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若树的带权路径长度达到最小,则这棵树被称为哈夫曼树. 这个定义里面涉及到了几个陌生的概念,下面就是一颗哈夫曼树,我们来看图解答. (01) 路径和路径长度 定义:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之

由二叉树构造赫夫曼树

赫夫曼树: 假设有n个权值{w1,w2,w3....},试构造一棵具有n个叶子节点的二叉树,每个叶子节点带权为wi,则其中带权路径长度最小的二叉树称为最优二叉树或者叫赫夫曼树. 构造赫夫曼树: 假设有n个权值,则构造出的赫夫曼树有n个叶子节点,n个权值分别设置为w1,w2,....wn,则赫夫曼树的构造规则为: 1.将w1,w2...看成是有n棵树的森林: 2.在森林中选择两个根节点的权值最小的树合并,作为一棵新树的左右子树,且新树的根节点权值为其左右子树根节点权值之和: 3.从森林中删除选取的