Python之逻辑回归模型来预测

建立一个逻辑回归模型来预测一个学生是否被录取。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
path=‘data‘+os.sep+‘Logireg_data.txt‘
pdData=pd.read_csv(path,header=None,names=[‘Exam1‘,‘Exam2‘,‘Admitted‘])
pdData.head()
print(pdData.head())
print(pdData.shape)
positive=pdData[pdData[‘Admitted‘]==1]#定义正
nagative=pdData[pdData[‘Admitted‘]==0]#定义负
fig,ax=plt.subplots(figsize=(10,5))
ax.scatter(positive[‘Exam1‘],positive[‘Exam2‘],s=30,c=‘b‘,marker=‘o‘,label=‘Admitted‘)
ax.scatter(nagative[‘Exam1‘],nagative[‘Exam2‘],s=30,c=‘r‘,marker=‘x‘,label=‘not Admitted‘)
ax.legend()
ax.set_xlabel(‘Exam 1 score‘)
ax.set_ylabel(‘Exam 2 score‘)
plt.show()#画图
##实现算法 the logistics regression 目标建立一个分类器 设置阈值来判断录取结果
##sigmoid 函数
def sigmoid(z):
    return 1/(1+np.exp(-z))
#画图
nums=np.arange(-10,10,step=1)
fig,ax=plt.subplots(figsize=(12,4))
ax.plot(nums,sigmoid(nums),‘r‘)#画图定义
plt.show()
#按照理论实现预测函数
def model(X,theta):
    return sigmoid(np.dot(X,theta.T))

pdData.insert(0,‘ones‘,1)#插入一列
orig_data=pdData.as_matrix()
cols=orig_data.shape[1]
X=orig_data[:,0:cols-1]
y=orig_data[:,cols-1:cols]
theta=np.zeros([1,3])
print(X[:5])
print(X.shape,y.shape,theta.shape)
##损失函数
def cost(X,y,theta):
    left=np.multiply(-y,np.log(model(X,theta)))
    right=np.multiply(1-y,np.log(1-model(X,theta)))
    return np.sum(left-right)/(len(X))
print(cost(X,y,theta))

#计算梯度
def gradient(X, y, theta):
    grad = np.zeros(theta.shape)
    error = (model(X, theta) - y).ravel()
    for j in range(len(theta.ravel())):  # for each parmeter
        term = np.multiply(error, X[:, j])
        grad[0, j] = np.sum(term) / len(X)

    return grad
##比较3种不同梯度下降方法
STOP_ITER=0
STOP_COST=1
STOP_GRAD=2

def stopCriterion(type,value,threshold):
    if type==STOP_ITER: return value>threshold
    elif type==STOP_COST: return abs(value[-1]-value[-2])<threshold
    elif type==STOP_GRAD: return np.linalg.norm(value)<threshold

import numpy.random
#打乱数据洗牌
def shuffledata(data):
    np.random.shuffle(data)
    cols=data.shape[1]
    X=data[:,0:cols-1]
    y=data[:,cols-1:]
    return X,y

import time

def descent(data, theta, batchSize, stopType, thresh, alpha):
    # 梯度下降求解

    init_time = time.time()
    i = 0  # 迭代次数
    k = 0  # batch
    X, y = shuffledata(data)
    grad = np.zeros(theta.shape)  # 计算的梯度
    costs = [cost(X, y, theta)]  # 损失值

    while True:
        grad = gradient(X[k:k + batchSize], y[k:k + batchSize], theta)
        k += batchSize  # 取batch数量个数据
        if k >= n:
            k = 0
            X, y = shuffledata(data)  # 重新洗牌
        theta = theta - alpha * grad  # 参数更新
        costs.append(cost(X, y, theta))  # 计算新的损失
        i += 1

        if stopType == STOP_ITER:
            value = i
        elif stopType == STOP_COST:
            value = costs
        elif stopType == STOP_GRAD:
            value = grad
        if stopCriterion(stopType, value, thresh): break

    return theta, i - 1, costs, grad, time.time() - init_time
#选择梯度下降
def runExpe(data, theta, batchSize, stopType, thresh, alpha):
    #import pdb; pdb.set_trace();
    theta, iter, costs, grad, dur = descent(data, theta, batchSize, stopType, thresh, alpha)
    name = "Original" if (data[:,1]>2).sum() > 1 else "Scaled"
    name += " data - learning rate: {} - ".format(alpha)
    if batchSize==n: strDescType = "Gradient"
    elif batchSize==1:  strDescType = "Stochastic"
    else: strDescType = "Mini-batch ({})".format(batchSize)
    name += strDescType + " descent - Stop: "
    if stopType == STOP_ITER: strStop = "{} iterations".format(thresh)
    elif stopType == STOP_COST: strStop = "costs change < {}".format(thresh)
    else: strStop = "gradient norm < {}".format(thresh)
    name += strStop
    print ("***{}\nTheta: {} - Iter: {} - Last cost: {:03.2f} - Duration: {:03.2f}s".format(
        name, theta, iter, costs[-1], dur))
    fig, ax = plt.subplots(figsize=(12,4))
    ax.plot(np.arange(len(costs)), costs, ‘r‘)
    ax.set_xlabel(‘Iterations‘)
    ax.set_ylabel(‘Cost‘)
    ax.set_title(name.upper() + ‘ - Error vs. Iteration‘)
    return theta
n= 100
runExpe(orig_data,theta,n,STOP_ITER,thresh=5000,alpha=0.000001)
plt.show()
runExpe(orig_data,theta,n,STOP_GRAD,thresh=0.05,alpha=0.001)
plt.show()
runExpe(orig_data,theta,n,STOP_COST,thresh=0.000001,alpha=0.001)
plt.show()
#对比
runExpe(orig_data, theta, 1, STOP_ITER, thresh=5000, alpha=0.001)
plt.show()
runExpe(orig_data, theta, 1, STOP_ITER, thresh=15000, alpha=0.000002)
plt.show()
runExpe(orig_data, theta, 16, STOP_ITER, thresh=15000, alpha=0.001)
plt.show()
##对数据进行标准化 将数据按其属性(按列进行)减去其均值,然后除以其方差。
#最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1

from sklearn import preprocessing as pp

scaled_data = orig_data.copy()
scaled_data[:, 1:3] = pp.scale(orig_data[:, 1:3])

runExpe(scaled_data, theta, n, STOP_ITER, thresh=5000, alpha=0.001)
#设定阈值
def predict(X, theta):
    return [1 if x >= 0.5 else 0 for x in model(X, theta)]

# if __name__==‘__main__‘:

scaled_X = scaled_data[:, :3]
y = scaled_data[:, 3]
predictions = predict(scaled_X, theta)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)]
accuracy = (sum(map(int, correct)) % len(correct))
print (‘accuracy = {0}%‘.format(accuracy))

运行结果

    Exam1      Exam2  Admitted
0  34.623660  78.024693         0
1  30.286711  43.894998         0
2  35.847409  72.902198         0
3  60.182599  86.308552         1
4  79.032736  75.344376         1
(100, 3)
[[ 1.         34.62365962 78.02469282]
 [ 1.         30.28671077 43.89499752]
 [ 1.         35.84740877 72.90219803]
 [ 1.         60.18259939 86.3085521 ]
 [ 1.         79.03273605 75.34437644]]
(100, 3) (100, 1) (1, 3)
0.6931471805599453
***Original data - learning rate: 1e-06 - Gradient descent - Stop: 5000 iterations
Theta: [[-0.00027127  0.00705232  0.00376711]] - Iter: 5000 - Last cost: 0.63 - Duration: 1.42s
***Original data - learning rate: 0.001 - Gradient descent - Stop: gradient norm < 0.05
Theta: [[-2.37033409  0.02721692  0.01899456]] - Iter: 40045 - Last cost: 0.49 - Duration: 11.63s
***Original data - learning rate: 0.001 - Gradient descent - Stop: costs change < 1e-06
Theta: [[-5.13364014  0.04771429  0.04072397]] - Iter: 109901 - Last cost: 0.38 - Duration: 32.27s
***Original data - learning rate: 0.001 - Stochastic descent - Stop: 5000 iterations
Theta: [[-0.36946801  0.0618896   0.05188799]] - Iter: 5000 - Last cost: 2.28 - Duration: 0.60s
***Original data - learning rate: 2e-06 - Stochastic descent - Stop: 15000 iterations
Theta: [[-0.00201976  0.01010609  0.00105193]] - Iter: 15000 - Last cost: 0.63 - Duration: 1.67s
***Original data - learning rate: 0.001 - Mini-batch (16) descent - Stop: 15000 iterations
Theta: [[-1.03184406  0.02958433  0.02230517]] - Iter: 15000 - Last cost: 0.80 - Duration: 2.10s
***Scaled data - learning rate: 0.001 - Gradient descent - Stop: 5000 iterations
Theta: [[0.3080807  0.86494967 0.77367651]] - Iter: 5000 - Last cost: 0.38 - Duration: 1.51s
accuracy = 60%

 程序用到的测试数据:

链接:https://pan.baidu.com/s/1Enr4JcPVzBiUCfvEYiVmlQ
提取码:lg51

 

原文地址:https://www.cnblogs.com/277223178dudu/p/10239464.html

时间: 2024-10-13 00:36:30

Python之逻辑回归模型来预测的相关文章

逻辑回归模型(Logistic Regression)及Python实现

逻辑回归模型(Logistic Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳性,目标变量是离散的,只有两种取值,通常会编码为0和1.假设我们有一个特征X,画出散点图,结果如下所示.这时候如果我们用线性回归去拟合一条直线:hθ(X) = θ0+θ1X,若Y≥0.5则判断为1,否则为0.这样我们也可以构建出一个模型去进行分类,但是会存在很多的缺点,比如稳健性差.准确率低.而逻辑

逻辑回归模型预测股票涨跌

http://www.cnblogs.com/lafengdatascientist/p/5567038.html 逻辑回归模型预测股票涨跌 逻辑回归是一个分类器,其基本思想可以概括为:对于一个二分类(0~1)问题,若P(Y=1/X)>0.5则归为1类,若P(Y=1/X)<0.5,则归为0类. 一.模型概述 1.Sigmoid函数 为了具象化前文的基本思想,这里介绍Sigmoid函数: 函数图像如下: 红色的线条,即x=0处将Sigmoid曲线分成了两部分:当 x < 0,y <

机器学习之——判定边界和逻辑回归模型的代价函数

判定边界(Decision Boundary) 上一次我们讨论了一个新的模型--逻辑回归模型(Logistic Regression),在逻辑回归中,我们预测: 当h?大于等于0.5时,预测y=1 当h?小于0.5时,预测y=0 根据上面的预测,我们绘制出一条S形函数,如下: 根据函数图像,我们知道,当 z=0时,g(z)=0.5 z>0时,g(z)>0.5 z<0时,g(z)<0.5 又有: 所以 以上,为我们预知的逻辑回归的部分内容.好,现在假设我们有一个模型: 并且参数?是向

逻辑回归模型梯度下降法跟牛顿法比较

1.综述 机器学习的优化问题中,梯度下降法和牛顿法是常用的两种凸函数求极值的方法,他们都是为了求得目标函数的近似解.梯度下降的目的是直接求解目标函数极小值,而牛顿法则变相地通过求解目标函数一阶导为零的参数值,进而求得目标函数最小值.在逻辑回归模型的参数求解中,一般用改良的梯度下降法,也可以用牛顿法. 2 梯度下降法 2.1算法描述 1.确定误差范围和下降的步长,确定函数的导函数 2.while(|新值 -旧值| >误差) 3.       旧值=新值 4.       新值=初始值-步长*导函数

基于分类问题的逻辑回归模型

由于分类问题的输出是0.1这样的离散值,因而回归问题中用到的线性回归模型就不再适用了.对于分类问题,我们建立逻辑回归模型. 针对逻辑回归模型,主要围绕以下几点来讨论. Logistic Regression (逻辑回归) Sigmoid Function (逻辑函数) Decision Boundaries (决策边界) Cost Function (代价函数) 决策边界不是数据集的属性,而是假设本身及其参数的属性.我们不是用训练集来定义的决策边界,我们用训练集来拟合参数θ,一旦有了参数θ就可以

吴裕雄 python 神经网络——TensorFlow实现回归模型训练预测MNIST手写数据集

import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True) #构建回归模型,输入原始真实值(group truth),采用sotfmax函数拟合,并定义损失函数和优化器 #定义回归模型 x = tf.placeholder(tf.float32,

逻辑回归模型

1. 逻辑回归是一种监督式的学习算法. [ 监督式学习算法有两组变量:预测变量(自变量x)和目标变量(因变量y),通过这些变量(x,y),搭建一个可以由已知的预测变量值x,得到对应的目标变量值y. 重复训练这个模型,直到能够在训练数据集上达到预定的准确度.] 2. 逻辑回归是一个分类算法. 利用已知的自变量,来预测一个离散型因变量的值(比如0/1, 是/否,真/假). 每个离散值的概率结果即是我们要预测的,可以通过一个逻辑函数(logit function),自然地,输出值在0到1之间. odd

机器学习python实战----逻辑回归

当看到这部分内容的时候我是激动的,因为它终于能跟我之前学习的理论内容联系起来了,这部分内容就是对之前逻辑回归理论部分的代码实现,所以如果有不甚理解的内容可以返回对照着理论部分来理解,下面我们进入主题----logistic regression 一.sigmoid函数 在之前的理论部分我们知道,如果我们需要对某物进行二分类,那么我们希望输出函数的值在区间[0,1],于是我们引入了sigmoid函数.函数的形式为. 曲线图 根据函数表达式,我们可以用代码来表示 def sigmoid(Inx):

21-城里人套路深之用python实现逻辑回归算法

如果和一个人交流时,他的思想像弹幕一样飘散在空中,将是怎样的一种景象?我想大概会毫不犹豫的点关闭的.生活为啥不能简单明了?因为太直白了令人乏味.保留一些不确定性反而扑朔迷离,引人入胜.我们学习了线性回归,对于损失函数及权重更新公式理解起来毫无压力,这是具体直白的好处.然而遇到抽象晦涩的逻辑回归,它的损失函数及权重更新公式就经历了从p(取值范围0~1)->p/(1-p)(取值范围0~+oo)->z=log(p/(1-p))(取值范围-oo~+oo)->p=1/1+e^(-z)->极大