04-树6 Complete Binary Search Tree (30 分)
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node‘s key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node‘s key.
- Both the left and right subtrees must also be binary search trees.
A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤1000). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.
Output Specification:
For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.
Sample Input:
10 1 2 3 4 5 6 7 8 9 0
Sample Output:
6 3 8 1 5 7 9 0 2 4
using System; using System.Collections.Generic; using System.Threading; using System.Threading.Tasks; using System.Diagnostics; using System.Net; using System.Text; using System.Xml; public class MyNode2 { public MyNode2(string s) { Value = int.Parse(s); } public MyNode2(int s) { Value = s; } public MyNode2 Left; public MyNode2 Right; public int Value; } class T { static void Main(string[] args) { //读取数量 int count = int.Parse(Console.ReadLine()); //读取数字行 var v = Console.ReadLine(); //数字切分放入list并排序 var a = v.Split(‘ ‘); List<int> listNum = new List<int>(); foreach (var item in a) { listNum.Add(int.Parse(item)); } listNum.Sort(); //以下内容是创建一个列表,把node放进去,为每个node创建左右子节点的同时,也把新创建的节点放入列表. //直到列表中node数量与给定的数字数量一致,结束 List<MyNode2> list = new List<MyNode2>(); list.Add(new MyNode2(-1)); int i = 0; while (list.Count < count) { list[i].Left = new MyNode2(-1); list.Add(list[i].Left); if (list.Count < count) { list[i].Right = new MyNode2(-1); list.Add(list[i].Right); } i++; } //为创建好的树,赋值,赋值从0开始 int x = 0; 赋值(list[0], ref x); StringBuilder sb = new StringBuilder(); //把node中的值,作为索引,输出listnum foreach (var item in list) { sb.Append(listNum[item.Value] + " "); } Console.WriteLine(sb.ToString().Trim()); return; } /// <summary> /// 以左中右的方式赋值,有子节点,则先遍历子节点 /// </summary> /// <param name="n"></param> /// <param name="v">ref,便于值累计</param> private static void 赋值(MyNode2 n, ref int v) { if (n.Left != null && n.Left.Value == -1) { 赋值(n.Left, ref v); } if (n.Value == -1) { n.Value = v++; } if (n.Right != null && n.Right.Value == -1) { 赋值(n.Right, ref v); } } }
原文地址:https://www.cnblogs.com/interim/p/9734682.html