CF1093:E. Intersection of Permutations(树状数组套主席树)

题意:给定长度为N的a数组,和b数组,a和b都是1到N的排列; 有两种操作,一种是询问[L1,R1],[L2,R2];即问a数组的[L1,R1]区间和b数组的[L2,R2]区间出现了多少个相同的数字。 一种是修改b数组两个位置的值。

思路:如果把b数组每个数取对应a数组对应数的位置,即按照b的下标建立横坐标,纵坐标是它在a中的位置,那么问题就成了,询问在区间[L2,R2]里面,多少个数在[L1,R1]这区间。  这很明显就是主席树可以解决的了。时间复杂度是O(N*logN*logN);常数差不多是4。

因为空间的问题,但是赛场上不少树套树都MLE或者RE了。

这里学到了回收空间:因为这里的节点不可能出现负数,所以如果一个节点的sum为0,那么子树节点的sum值都为0,那么这个子树都可以回收,即把它们赋值为0;

(cdq先补了G再回来补。分块懒得补了。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=200010;
struct in{
    int l,r,sum;
    in(){l=r=sum=0;}
}s[maxn*130];
queue<int>q;
int rt[maxn],pos[maxn],a[maxn],b[maxn],N,cnt;
void add(int &Now,int L,int R,int pos,int v)
{
    if(!Now){
        if(!q.empty()) Now=q.front(),q.pop();
        else Now=++cnt;
    }
    s[Now].sum+=v;
    if(L==R) return ;int Mid=(L+R)>>1;
    if(pos<=Mid) add(s[Now].l,L,Mid,pos,v);
    else add(s[Now].r,Mid+1,R,pos,v);
    if(!s[Now].sum) {q.push(Now); Now=0;}
}
void Add(int x,int pos,int v)
{
    while(x<=N){
        add(rt[x],0,N,pos,v);
        x+=(-x)&x;
    }
}
int query(int Now,int L,int R,int l,int r)
{
    if(L>R) return 0;
    if(L<0||l<0) return 0;
    if(!Now) return 0;
    if(l<=L&&r>=R) return s[Now].sum;
    int Mid=(L+R)>>1,res=0;
    if(l<=Mid) res+=query(s[Now].l,L,Mid,l,r);
    if(r>Mid) res+=query(s[Now].r,Mid+1,R,l,r);
    return res;
}
int Query(int x,int L,int R)
{
    if(L>R) return 0; if(x<=0) return 0;
    int res=0; while(x){
        res+=query(rt[x],0,N,L,R);
        x-=(-x)&x;
    } return res;
}
int main()
{
    int M,opt,L1,R1,L2,R2,x,y;
    scanf("%d%d",&N,&M);
    rep(i,1,N) scanf("%d",&a[i]),pos[a[i]]=i;
    rep(i,1,N) scanf("%d",&b[i]);
    rep(i,1,N) Add(i,pos[b[i]],1);
    while(M--){
        scanf("%d",&opt);
        if(opt==1){
            scanf("%d%d%d%d",&L1,&R1,&L2,&R2);
            int ans=Query(R2,L1,R1)-Query(L2-1,L1,R1);
            printf("%d\n",ans);
        }
        else {
            scanf("%d%d",&x,&y);
            Add(x,pos[b[x]],-1); Add(y,pos[b[y]],-1);
            swap(b[x],b[y]);
            Add(x,pos[b[x]],1); Add(y,pos[b[y]],1);
        }
    }
    return 0;
}

原文地址:https://www.cnblogs.com/hua-dong/p/10126230.html

时间: 2024-10-22 02:53:20

CF1093:E. Intersection of Permutations(树状数组套主席树)的相关文章

BZOJ 3196 Tyvj 1730 二逼平衡树 ——树状数组套主席树

[题目分析] 听说是树套树.(雾) 怒写树状数组套主席树,然后就Rank1了.23333 单点修改,区间查询+k大数查询=树状数组套主席树. [代码] #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <set> #include <map> #include <string> #include <alg

[BZOJ 3196] 二逼平衡树 树状数组套主席树

3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3357  Solved: 1326[Submit][Status][Discuss] Description 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:1.查询k在区间内的排名2.查询区间内排名为k的值3.修改某一位值上的数值4.查询k在区间内的前驱(前驱定义为小于x,且最大的数)5.查询k在区间内的后继(后继定义为

【BZOJ1901】Dynamic Rankings,树状数组套主席树

Time:2016.05.09 Author:xiaoyimi 转载注明出处谢谢 传送门(权限) 题面 1901: Zju2112 Dynamic Rankings Time Limit: 10 Sec Memory Limit: 128 MB Submit: 6678 Solved: 2777 [Submit][Status][Discuss] Description 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a

[COGS257]动态排名系统 树状数组套主席树

257. 动态排名系统 时间限制:5 s   内存限制:512 MB [问题描述]给定一个长度为N的已知序列A[i](1<=i<=N),要求维护这个序列,能够支持以下两种操作:1.查询A[i],A[i+1],A[i+2],...,A[j](1<=i<=j<=N)中,升序排列后排名第k的数.2.修改A[i]的值为j.所谓排名第k,指一些数按照升序排列后,第k位的数.例如序列{6,1,9,6,6},排名第3的数是6,排名第5的数是9.[输入格式]第一行包含一个整数D(0<=

关于树状数组套主席树的一些博客

哇仿佛磕了几百年啊; 废话不多说,以下是帮助很大的一些blog: ZOJ 2112 Dynamic Rankings (动态第k大,树状数组套主席树) 主席树全纪录(这个很好) 主席树乱讲(没啥关系,不过有些题目可以刷??) 随笔分类 - 数据结构---主席树(同上) 原文地址:https://www.cnblogs.com/wwtt/p/10099695.html

zoj 2112 Dynamic Rankings(树状数组套主席树)

题意:对于一段区间,每次求[l,r]的第k大,存在单点修改操作: 思路: 学习主席树参考: http://blog.csdn.net/wjf_wzzc/article/details/24560117(各种形式) http://blog.csdn.net/bossup/article/details/31921235(推荐) http://blog.csdn.net/xiaofengcanyuexj/article/details/25553521?utm_source=tuicool(图解)

【树套树】【树状数组套主席树】

这是你顾第一次写[树套树]!!!!!!!! [原题] 求区间第k小元素,区间可修改 [正解] 如果没有修改的话,就直接写搞个主席树利用前缀和加加减减一下就好了.但是多了个修改,修改以为着从当前修改节点k到往后n-k个树顶所代表的树全部都要修改,这是一件非常操蛋的事情.回想起多年前学数据结构初步的时候,区间批量修改无非就是树状数组or线段树.故我们借用树状数组的轮廓来构建主席树的各树顶. 对树状数组每个节点,我们都当成是主席树的树顶,改树顶所涵盖的区间与树状数组该节点意义相同. [查询]查询区间[

【树状数组套主席树】带修改区间K大数

P2617 Dynamic Rankings 题目描述给定一个含有n个数的序列a[1],a[2],a[3]……a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]……a[j]中第k小的数是多少(1≤k≤j-i+1),并且,你可以改变一些a[i]的值,改变后,程序还能针对改变后的a继续回答上面的问题.你需要编一个这样的程序,从输入文件中读入序列a,然后读入一系列的指令,包括询问指令和修改指令. 对于每一个询问指令,你必须输出正确的回答. 输入输出格式输入格

浅谈树状数组套主席树

话说主席树还没写就先写这一篇了\(qwq\) 回顾一下主席树的实现过程:类似查分思想,将线段树的每次修改看做函数式以支持可持久化.因为这样的线段树是可减的. 那么我们维护信息的时候,就要维护每一次新形成的信息.但是我们可以根据前一个信息的基础上进行改动,而不必要去再建一棵树. 所以总而言之,是前缀和的思想. 那么,当需要修改的时候,怎么做呢? 考虑普通的区间操作,当做单点修改的时候,一般用树状数组,线段树和分块.最好实现的就是树状数组. 考虑用树状数组来维护主席树的信息. 树状数组中维护了每一次

【poj1901-求区间第k大值(带修改)】树状数组套主席树

901: Zju2112 Dynamic Rankings Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 7025  Solved: 2925[Submit][Status][Discuss] Description 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+2]--a[j]中第k小的数是多少(1≤k≤j-i+1),并且,你可以改变一些a[i]