【莫队】bzoj4542: [Hnoi2016]大数

挺有意思的,可以仔细体味一下的题;看白了就是莫队板子。

Description

  小 B 有一个很大的数 S,长度达到了 N 位;这个数可以看成是一个串,它可能有前导 0,例如00009312345
。小B还有一个素数P。现在,小 B 提出了 M 个询问,每个询问求 S 的一个子串中有多少子串是 P 的倍数(0 也
是P 的倍数)。例如 S为0077时,其子串 007有6个子串:0,0,7,00,07,007;显然0077的子串007有6个子串都是素
数7的倍数。

Input

  第一行一个整数:P。第二行一个串:S。第三行一个整数:M。接下来M行,每行两个整数 fr,to,表示对S 的
子串S[fr…to]的一次询问。注意:S的最左端的数字的位置序号为 1;例如S为213567,则S[1]为 2,S[1…3]为 2
13。N,M<=100000,P为素数

Output

  输出M行,每行一个整数,第 i行是第 i个询问的答案。


题目分析

一个区间[l,r]产生贡献即$number_{i,j}\equiv 0\ ({\rm mod}\ p)$.

按照常见套路来说,应该把区间拆成关于端点的式子。用$pre[i]$表示前$i$位在十进制下的数值,那么即$number_{i,j}=pre[j]-10^{j-i+1}*pre[i-1]$

原文地址:https://www.cnblogs.com/antiquality/p/9748670.html

时间: 2024-10-15 11:03:53

【莫队】bzoj4542: [Hnoi2016]大数的相关文章

[BZOJ4542] [Hnoi2016] 大数 (莫队)

Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个询问求 S 的一个子串中有多少子串是 P 的倍数(0 也是P 的倍数).例如 S为0077时,其子串 007有6个子串:0,0,7,00,07,007:显然0077的子串007有6个子串都是素数7的倍数. Input 第一行一个整数:P.第二行一个串:S.第三行一个整数:M.接下来M行,每行两个整数

BZOJ4542 [HNOI2016] 大数

[问题描述] 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345 .小B还有一个素数P.现在,小 B 提出了 M 个询问,每个询问求 S 的一个子串中有多少子串是 P 的倍数(0 也 是P 的倍数).例如 S为0077时,其子串 007有6个子串:0,0,7,00,07,007:显然0077的子串007有6个子串都是素 数7的倍数. [输入格式] 第一行一个整数:P.第二行一个串:S.第三行一个整数:M.接下来M行,每行两个整数

bzoj4542: [Hnoi2016]大数(莫队)

这题...离散化...$N$和$n$搞错了...查了$2h$...QAQ 考虑$s[l...r]$,可以由两个后缀$suf[l]-suf[r+1]$得到$s[l...r]$代表的数乘$10^k$得到的结果,如果$p$不为$2$或$5$,即$gcd(p, 10^k)=1$,那么显然$s[l...r]$乘$10^k$模$p$为$0$的话,$s[l...r]$模p也为$0$,所以我们就可以变成询问$[l,r+1]$里有几个相同的后缀了. 如果$p$为$2$或$5$的话,我们还得判断这个数的个位是否是$

【BZOJ4542】[Hnoi2016]大数 莫队

[BZOJ4542][Hnoi2016]大数 Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个询问求 S 的一个子串中有多少子串是 P 的倍数(0 也是P 的倍数).例如 S为0077时,其子串 007有6个子串:0,0,7,00,07,007:显然0077的子串007有6个子串都是素数7的倍数. Input 第一行一个整数:P.第二行一个串:S

【bzoj5452】[Hnoi2016]大数(莫队)

题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4542 首先若p=2,5则这题就是道傻逼题,前缀和搞一下没了.如果p为其他质数,那么可以这么处理: 我们先预处理出数组num[i]表示原串第i~n位表示的数模p的余数,那么第l~r位表示的数模p的余数为(num[l]-num[r+1])/10^(n-r),因为10^(n-r)与p互质,所以若num[l]=num[r+1],则第l~r位表示的数是p的倍数.于是莫队一下就好了. 代码: #

4542: [Hnoi2016]大数|莫队

HN一天考两个莫队是什么鬼..或者说莫队不是正确的姿势..? 考虑已经知道了l..r的答案新添入r+1如何更新当前答案 需要先预处理出后缀modp的值bi,假设子序列l..r模p的值为x 那么x?10r?l+b[r]=b[l] 然后就可以直接莫队统计了 模数为2或5的时候要特判一下 #include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cs

【BZOJ4540】【HNOI2016】序列(莫队)

[BZOJ4540][HNOI2016]序列(莫队) 题面 BZOJ 洛谷 Description 给定长度为n的序列:a1,a2,-,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,-,ar- 1,ar.若1≤l≤s≤t≤r≤n,则称a[s:t]是a[l:r]的子序列.现在有q个询问,每个询问给定两个数l和r,1≤l≤r ≤n,求a[l:r]的不同子序列的最小值之和.例如,给定序列5,2,4,1,3,询问给定的两个数为1和3,那么a[1:3]有 6个子序

4540: [Hnoi2016]序列|莫队+ST表

考虑现在已经知道了[l,r]的答案新添入一个r+1如何更新答案 也就是右端点在r+1处左端点在l..r+1之间的所有的子序列的答案 可以找出l..r中最小的数的位置p,然后p以及p左侧作为左端点的答案就可以直接计算了 考虑左端点在p+1....r+1时对答案的贡献,可以与处理一个前缀和Si表示以i为右端点的所有子序列的答案之和 那么左端点在p+1....r+1时对答案的贡献就是Sr+1?Sp 其他端点移动的做法也同理 为什么我的莫队跑了17s,而网上的其他莫队只需要5s,人傻自带三倍常数QWQ

[bzoj4540][Hnoi2016]序列——单调栈+莫队+RMQ

题目大意: 给定一个序列,每次询问一个区间[L,R]所有子区间的最小值之和. 思路: 考虑莫队如何转移,新增一个端点R,则增加的区间为[L...R-1,R],考虑这些区间新贡献的最小值. 我们把从R开始向左单调下降的序列给求出来,不难发现最小值是由区间内包含的最靠左一个在单调下降序列里的元素的值所决定的. 于是我们利用单调栈求出每一个元素前面第一个小于它的元素\(pre_i\),并求出以这个元素结尾的所有区间的最小值的和\(f_i\),不难发现\(f_i=f_{pre_i}+(i-pre_i)\