程序员转行大数据开发的重要【筹码】之一,掌握后最少能获得月薪20K

Hadoop由GNU / Linux平台及其版本支持。因此,我们必须安装一个Linux操作系统来设置Hadoop环境。如果您有除Linux以外的操作系统,您可以在其中安装Virtualbox软件,并在Virtualbox内部安装Linux。

分享之前我还是要推荐下我自己创建的大数据学习资料分享群 458345782,这是全国最大的大数据学习交流的地方,2000人聚集,不管你是小白还是大牛,小编我都挺欢迎,不定期分享干货,欢迎初学和进阶中的小伙伴。

安装前设置

在将Hadoop安装到Linux环境之前,我们需要使用ssh(Secure Shell)来设置Linux。按照以下步骤设置Linux环境。

创建用户

在开始时,建议为Hadoop创建一个单独的用户,以便将Hadoop文件系统与Unix文件系统隔离。按照以下步骤创建用户:

使用命令“su”打开根。

使用命令“useradd username”从root帐户创建用户。

现在您可以使用命令“su username”打开现有的用户帐户。

打开Linux终端并键入以下命令以创建用户。

$ su

password:

useradd hadoop

passwd hadoop

New passwd:

Retype new passwd

SSH设置和密钥生成

需要SSH设置在集群上执行不同的操作,如启动,停止,分布式守护程序shell操作。要对Hadoop的不同用户进行身份验证,需要为Hadoop用户提供公钥/私钥对,并与不同的用户共享。

以下命令用于使用SSH生成键值对。将公共密钥表单id_rsa.pub复制到authorized_keys,并分别向拥有者授予authorized_keys文件的读取和写入权限。

$ ssh-keygen -t rsa

$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

$ chmod 0600 ~/.ssh/authorized_keys

安装Java

Java是Hadoop的主要先决条件。首先,您应该使用命令“java -version”验证系统中是否存在java。 java版本命令的语法如下。

$ java -version

如果一切正常,它会给你以下输出。

java version "1.7.0_71"

Java(TM) SE Runtime Environment (build 1.7.0_71-b13)

Java HotSpot(TM) Client VM (build 25.0-b02, mixed mode)

如果系统中没有安装java,请按照以下步骤安装java。

第1步

通过访问以下链接http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads1880260.html下载java(JDK <latest version> - X64.tar.gz)。

然后jdk-7u71-linux-x64.tar.gz将下载到您的系统。

第2步

通常你会在下载文件夹中找到下载的java文件。使用以下命令验证它并解压缩jdk-7u71-linux-x64.gz文件。

$ cd Downloads/

$ ls

jdk-7u71-linux-x64.gz

$ tar zxf jdk-7u71-linux-x64.gz

$ ls

jdk1.7.0_71 jdk-7u71-linux-x64.gz

第3步

要使java可用于所有用户,您必须将其移动到位置“/ usr / local /”。打开root,然后键入以下命令。

$ su

password:

mv jdk1.7.0_71 /usr/local/

exit

第4步

要设置PATH和JAVA_HOME变量,请将以下命令添加到?/ .bashrc文件。

export JAVA_HOME=/usr/local/jdk1.7.0_71

export PATH=$PATH:$JAVA_HOME/bin

现在将所有更改应用到当前运行的系统。

$ source ~/.bashrc

第5步

现在将所有更改应用到当前运行的系统。

alternatives --install /usr/bin/java java usr/local/java/bin/java 2

alternatives --install /usr/bin/javac javac usr/local/java/bin/javac 2

alternatives --install /usr/bin/jar jar usr/local/java/bin/jar 2

alternatives --set java usr/local/java/bin/java

alternatives --set javac usr/local/java/bin/javac

alternatives --set jar usr/local/java/bin/jar

现在如上所述从终端验证java -version命令。

下载Hadoop

使用以下命令从Apache Software Foundation下载并提取Hadoop 2.4.1。

$ su

password:

cd /usr/local

wget http://apache.claz.org/hadoop/common/hadoop-2.4.1/

hadoop-2.4.1.tar.gz

tar xzf hadoop-2.4.1.tar.gz

mv hadoop-2.4.1/* to hadoop/

exit

Hadoop操作模式

一旦下载了Hadoop,您就可以使用以下三种支持模式之一来操作Hadoop集群:

本地/独立模式 :在系统中下载Hadoop之后,默认情况下,它以独立模式配置,并且可以作为单个Java进程运行。

伪分布式模式 :它是单机上的分布式仿真。每个Hadoop守护进程(如hdfs,yarn,MapReduce等)都将作为单独的java进程运行。此模式对开发有用。

完全分布式的模式 :此模式是完全分布式的,至少有两台或多台机器作为集群。我们将在接下来的章节中详细讨论这种模式。

在独立模式下安装Hadoop

这里我们将讨论Hadoop 2.4.1在独立模式下的安装。

没有运行的守护程序,并且一切都在单个JVM中运行。独立模式适合在开发期间运行MapReduce程序,因为它很容易测试和调试。

设置Hadoop

您可以通过将以下命令附加到?/.bashrc文件来设置Hadoop环境变量。

export HADOOP_HOME=/usr/local/hadoop

在继续进行之前,您需要确保Hadoop正常工作。只需发出以下命令:

$ hadoop version

如果您的设置一切正常,那么你应该看到以下结果:

Hadoop 2.4.1

Subversion https://svn.apache.org/repos/asf/hadoop/common -r 1529768

Compiled by hortonmu on 2013-10-07T06:28Z

Compiled with protoc 2.5.0

From source with checksum 79e53ce7994d1628b240f09af91e1af4

这意味着你的Hadoop的独立模式设置工作正常。默认情况下,Hadoop配置为在单台计算机上以非分布式方式运行。

例子

让我们检查一个简单的Hadoop示例。 Hadoop安装提供了以下示例MapReduce jar文件,它提供了MapReduce的基本功能,可用于计算,如Pi值,文件列表中的字数等。

$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar

让我们有一个输入目录,我们将推送几个文件,我们的要求是计数这些文件中的字的总数。要计算总字数,我们不需要写我们的MapReduce,只要.jar文件包含字计数的实现。您可以尝试使用相同的.jar文件的其他示例;只需发出以下命令来检查hadoop-mapreduce-examples-2.2.0.jar文件支持的MapReduce功能程序。

$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduceexamples-2.2.0.jar

步骤1

在输入目录中创建临时内容文件。您可以在要工作的任何位置创建此输入目录。

$ mkdir input

$ cp $HADOOP_HOME/*.txt input

$ ls -l input

它将在您的输入目录中提供以下文件:

total 24

-rw-r--r-- 1 root root 15164 Feb 21 10:14 LICENSE.txt

-rw-r--r-- 1 root root 101 Feb 21 10:14 NOTICE.txt

-rw-r--r-- 1 root root 1366 Feb 21 10:14 README.txt

这些文件已从Hadoop安装主目录复制。对于您的实验,您可以有不同的和大的文件集。

第2步

让我们开始Hadoop进程来计算输入目录中所有可用文件中的总字数,如下所示:

$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduceexamples-2.2.0.jar wordcount input output

第3步

第2步将执行所需的处理并将输出保存在output / part-r00000文件中,您可以使用以下命令检查:

$cat output/*

它将列出所有字以及它们在输入目录中可用的所有文件中的总计数。

"AS 4

"Contribution" 1

"Contributor" 1

"Derivative 1

"Legal 1

"License" 1

"License"); 1

"Licensor" 1

"NOTICE” 1

"Not 1

"Object" 1

"Source” 1

"Work” 1

"You" 1

"Your") 1

"[]" 1

"control" 1

"printed 1

"submitted" 1

(50%) 1

(BIS), 1

(C) 1

(Don‘t) 1

(ECCN) 1

(INCLUDING 2

(INCLUDING, 2

.............

在伪分布式模式下安装Hadoop

按照下面给出的步骤在伪分布式模式下安装Hadoop 2.4.1。

第1步:设置Hadoop

您可以通过将以下命令附加到?/.bashrc文件来设置Hadoop环境变量。

export HADOOP_HOME=/usr/local/hadoop

export HADOOP_MAPRED_HOME=$HADOOP_HOME

export HADOOP_COMMON_HOME=$HADOOP_HOME

export HADOOP_HDFS_HOME=$HADOOP_HOME

export YARN_HOME=$HADOOP_HOME

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native

export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin

export HADOOP_INSTALL=$HADOOP_HOME

现在将所有更改应用到当前运行的系统。

$ source ~/.bashrc

第2步:Hadoop配置

您可以在位置“$ HADOOP_HOME/etc/hadoop”中找到所有Hadoop配置文件。需要根据您的Hadoop基础结构对这些配置文件进行更改。

$ cd $HADOOP_HOME/etc/hadoop

为了在java中开发Hadoop程序,您必须通过用系统中java的位置替换JAVA_HOME值来重置hadoop-env.sh文件中的java环境变量。

export JAVA_HOME=/usr/local/jdk1.7.0_71

以下是您必须编辑以配置Hadoop的文件列表。

core-site.xml

core-site.xml文件包含诸如用于Hadoop实例的端口号,为文件系统分配的内存,用于存储数据的内存限制以及读/写缓冲区大小的信息。

打开core-site.xml并在<configuration>,</ configuration>标签之间添加以下属性。

<configuration>

<property>

<name>fs.default.name </name>

<value> hdfs://localhost:9000 </value>

</property>

</configuration>

hdfs-site.xml

hdfs-site.xml文件包含本地文件系统的复制数据值,namenode路径和datanode路径等信息。这意味着您要存储Hadoop基础架构的位置。

让我们假设以下数据。

dfs.replication (data replication value) = 1

(In the below given path /hadoop/ is the user name.

hadoopinfra/hdfs/namenode is the directory created by hdfs file system.)

namenode path = //home/hadoop/hadoopinfra/hdfs/namenode

(hadoopinfra/hdfs/datanode is the directory created by hdfs file system.)

datanode path = //home/hadoop/hadoopinfra/hdfs/datanode

打开此文件,并在此文件中的<configuration> </ configuration>标记之间添加以下属性。

<configuration>

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>dfs.name.dir</name>

<value>file:///home/hadoop/hadoopinfra/hdfs/namenode </value>

</property>

<property>

<name>dfs.data.dir</name>

<value>file:///home/hadoop/hadoopinfra/hdfs/datanode </value>

</property>

</configuration>

注意:在上述文件中,所有属性值都是用户定义的,您可以根据Hadoop基础结构进行更改。

yarn-site.xml

此文件用于将Yarn为Hadoop配置为Hadoop。打开yarn-site.xml文件,并在此文件中的<configuration>,</ configuration>标记之间添加以下属性。

<configuration>

<property>

<name>yarn.nodemanager.aux-services</name>

<value>mapreduce_shuffle</value>

</property>

</configuration>

mapred-site.xml

此文件用于指定我们使用的MapReduce框架。默认情况下,Hadoop包含yarn-site.xml的模板。首先,需要使用以下命令将文件从mapred-site,xml.template复制到mapred-site.xml文件。

$ cp mapred-site.xml.template mapred-site.xml

打开mapred-site.xml文件,并在此文件中的<configuration>,</ configuration>标记之间添加以下属性。

<configuration>

<property>

<name>mapreduce.framework.name</name>

<value>yarn</value>

</property>

</configuration>

验证Hadoop安装

以下步骤用于验证Hadoop安装。

第1步:名称节点设置

使用命令“HDFS的NameNode -format”如下设置名称节点。

$ cd ~

$ hdfs namenode -format

预期结果如下。

10/24/14 21:30:55 INFO namenode.NameNode: STARTUP_MSG:

/****

STARTUP_MSG: Starting NameNode

STARTUP_MSG: host = localhost/192.168.1.11

STARTUP_MSG: args = [-format]

STARTUP_MSG: version = 2.4.1

...

...

10/24/14 21:30:56 INFO common.Storage: Storage directory

/home/hadoop/hadoopinfra/hdfs/namenode has been successfully formatted.

10/24/14 21:30:56 INFO namenode.NNStorageRetentionManager: Going to

retain 1 images with txid >= 0

10/24/14 21:30:56 INFO util.ExitUtil: Exiting with status 0

10/24/14 21:30:56 INFO namenode.NameNode: SHUTDOWN_MSG:

/****

SHUTDOWN_MSG: Shutting down NameNode at localhost/192.168.1.11

****/

第2步:验证HadoopDFS

以下命令用于启动dfs。执行此命令将启动您的Hadoop文件系统。

$ start-dfs.sh

预期输出如下:

10/24/14 21:37:56

Starting namenodes on [localhost]

localhost: starting namenode, logging to /home/hadoop/hadoop

2.4.1/logs/hadoop-hadoop-namenode-localhost.out

localhost: starting datanode, logging to /home/hadoop/hadoop

2.4.1/logs/hadoop-hadoop-datanode-localhost.out

Starting secondary namenodes [0.0.0.0]

第3步:验证Yarn脚本

下面的命令被用于启动Yarn脚本。执行该命令将启动纱守护进程。

$ start-yarn.sh

预期输出如下:

starting yarn daemons

starting resourcemanager, logging to /home/hadoop/hadoop

2.4.1/logs/yarn-hadoop-resourcemanager-localhost.out

localhost: starting nodemanager, logging to /home/hadoop/hadoop

2.4.1/logs/yarn-hadoop-nodemanager-localhost.out

第4步:在浏览器上访问Hadoop

访问Hadoop的默认端口号为50070.使用以下URL在浏览器上获取Hadoop服务。

http://localhost:50070/

第5步:验证集群的所有应用程序

访问群集的所有应用程序的默认端口号为8088.使用以下URL访问此服务。

分享之前我还是要推荐下我自己创建的大数据学习资料分享群 458345782,这是全国最大的大数据学习交流的地方,2000人聚集,不管你是小白还是大牛,小编我都挺欢迎,不定期分享干货,欢迎初学和进阶中的小伙伴。

原文地址:http://blog.51cto.com/14068431/2320113

时间: 2024-11-07 23:12:24

程序员转行大数据开发的重要【筹码】之一,掌握后最少能获得月薪20K的相关文章

Java程序员转行大数据的优势

大数据时代,中国IT环境也将面临重新洗牌,不仅仅是企业,更是程序员们转型可遇而不可求的机遇. 国内大多数大型互联网公司的程序员被称作研发工程师,但实际上国内几乎没有研发项目,只能叫做开发.开发程序员的工作大多是重复性劳动,容易产生疲惫感,薪资在工作2-5年内就达到了一个峰值,再要提升就比较困难,这样就导致了很多程序员最终转行做了其他行业. JAVA的精密,强大,拥有其它语言不可替代的性能和可维护性,早已经是成为最受欢迎的编程语言之一,很多人想进入IT行业,首选的第一门语言就是JAVA.但是,在未

程序员转行大数据需要具备什么能力?

大家都说"我要做大数据", 然后"你想象中的做大数据到底是做什么?",大多数人往往说不出来. 显然,对于大数据行业的生态,未来大数据领域都有哪些发展机会.不同岗位需要具备什么能力,很多人都不了解. 大数据业务流程有4个基本环节,分别是业务理解.数据准备.数据挖掘.分析应用.在这个流程里有三个职能领域:大数据系统研发,承担整个运营系统的构建与维护.数据准备.平台与工具开发;大数据挖掘,负责关键模型应用与研究工作;大数据分析应用:既是外部需求的接入者,也是解决方案的输出

好程序员分享大数据教程之线程高级部分

好程序员分享大数据教程之线程高级部分,首先讲一下线程的生命周期 对于一个线程, 在被创建后, 不是立即就进入到了运行状态, 也不是一直处于运行状态, 在线程的声明周期中, 一个线程会在多种状态之间进行切换 new : 新生状态, 线程被实例化, 但是还没有开始执行(start) runnable: 就绪状态, 已经执行过start, 线程已经启动了, 只是没有抢到CPU时间片 running: 运行状态, 抢到了CPU时间片 blocked: 阻塞状态, 线程执行的过程中, 遇到一些特殊情况,

java开发转行大数据开发的学习路径

从Java开发通过大概3个月的学习转到大数据开发,主要分享一下学习路径: 第一阶段: 01.Linux学习(跟鸟哥学就ok了) 02.Java 高级学习(<深入理解Java虚拟机>.<Java高并发实战>) 第二阶段: 03.Hadoop (董西成的书) 04.HBase(<HBase权威指南>) 05.Hive(<Hive开发指南>) 06.Scala(<快学Scala>) 07.Spark (<Spark 快速大数据分析>) 08

IT技术人员转行大数据,应该考虑那些问题

大数据人才需求迫切,高薪资.高福利,因此转行的大数据的人也很多,那么对于一些普通技术开发人员,在进行转行大数据开发时有哪些必要的考虑因素呢? 关于从事一个行业的要求,最简单的方式莫过于从求职网站上查看信息,下面就是针对于大数据行业的一些职业要求,而这也是转行大数据人必须要考虑的. 分享之前我还是要推荐下我自己创建的java架构师: 697558955无论是大牛还是想转行想学习的大学生小编我都挺欢迎,今天的已经资讯上传到群文件,不定期分享干货,包括我自己整理的一份最新的适合2018年学习的大数据教

零基础如何转行大数据?系统学习路线在此

都知道大数据薪资高,前景好.而大数据又需要Java基础.对于稍微懂些Java的童鞋来说,到底如何转行大数据呢?今天小编给你一个大数据工程师具体的学习路线图.[ps:无java基础也可以学习大数据] 分享转行经验路线 对于Java程序员,大数据的主流平台hadoop是基于Java开发的,所以Java程序员往大数据开发方向转行从语言环境上更为顺畅,另外很多基于大数据的应用框架也是Java的,所以在很多大数据项目里掌握Java语言是有一定优势的. 在这里还是要推荐下我自己建的大数据学习交流群:5298

越来越多的Java程序员转行Java大数据...

JAVA的精密,强大,拥有其它语言不可替代的性能和可维护性,早已经是成为最受欢迎的编程语言之一,很多人想进入IT行业,首选的第一门语言就是JAVA. 但是,在未来肯定是大数据的天下,人工智能的爆发,将会有大量企业会进入大数据领域,从而产生大量的大数据人才需求. 据最新发布的<大数据人才报告>显示,目前全国的大数据人才仅46万,未来3-5年内大数据人才的缺口将高达150万.领英报告表明,数据分析人才的供给指数最低,仅为0.05,属于高度稀缺.数据分析人才跳槽速度也最快,平均跳槽速度为19.8个月

如何自学大数据开发?

大数据技术怎么自学?大数据开发如何自学? 我们在学习大数据开发前需要先找到适合自己的方式方法,首先需要审视一下自身的情况,是否是以兴趣为出发点,对大数据是不是自己是真的感兴趣吗,目前对大数据的了解有多少,自己的学习能力和理解能力是否适合学习.如果是跨行业转岗是否做好了心理准备.根据不同基础水平可以分为三类: 第一类:零基础学员,对大数据行业和技术一无所知; 第二类:有一定的编程基础,对大数据行业略知一二,无发真正应该用; 第三类:有工作经验的工程师,对大数据行业了解,想转行大数据开发. 在搞清楚

大数据开发可以自学吗?有哪些需要注意的地方?

我们在学习大数据开发前需要先找到适合自己的方式方法,首先需要审视一下自身的情况,是否是以兴趣为出发点,对大数据是不是自己是真的感兴趣吗,目前对大数据的了解有多少,自己的学习能力和理解能力是否适合学习.如果是跨行业转岗是否做好了心理准备.根据不同基础水平可以分为三类: 第一类:零基础学员,对大数据行业和技术一无所知; 第二类:有一定的编程基础,对大数据行业略知一二,无发真正应该用; 第三类:有工作经验的工程师,对大数据行业了解,想转行大数据开发. 在搞清楚了自身的状况之外,我们要针对不同阶段.不同