[LightOJ 1027] A Dangerous Maze

A Dangerous Maze

You are in a maze; seeing n doors in front of you in beginning. You can choose any door you like. The probability for choosing a door is equal for all doors.

If you choose the ith door, it can either take you back to the same position where you begun in ximinutes, or can take you out of the maze after xi minutes. If you come back to the same position, you can‘t remember anything. So, every time you come to the beginning position, you have no past experience.

Now you want to find the expected time to get out of the maze.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case contains a blank line and an integer n (1 ≤ n ≤ 100) denoting the number of doors. The next line contains n space separated integers. If the ith integer (xi) is positive, you can assume that the ith door will take you out of maze after xi minutes. If it‘s negative, then the ith door will take you back to the beginning position after abs(xi) minutes. You can safely assume that 1 ≤ abs(xi) ≤ 10000.

Output

For each case, print the case number and the expected time to get out of the maze. If it‘s impossible to get out of the maze, print ‘inf‘. Print the result in p/q format. Where p is the numerator of the result and q is the denominator of the result and they are relatively prime. See the samples for details.

Sample Input

3

1

1

2

-10 -3

3

3 -6 -9

Sample Output

Case 1: 1/1

Case 2: inf

Case 3: 18/1

题目的大意是,有n扇门,一些会在xi秒后带你立刻迷宫,一些会让你回到-xi秒前,选择每扇门的概率相同,求离开迷宫所需时间的期望.

这是期望数学的入门题.

我们设出去的期望为E,选正数的概率为P1,之后平均花T1的时间出去;选负数的概率是P2,之后平均花T2的时间出去。

则E=P1*T1+P2*(T2+E);

解得:E=(P1T1+P2T2)/ (1-P2)=(P1T1+P2T2)/ P1

我们再设正权和为S1,负权和为S2,正权数为N1,负权数为N2,总数为N,则:

T1*N1/N+T2*N2/N      (S1+S2)/N    S1+S2

E=-----------------------------=----------------=----------

N1/N                      N1/N            N1

如果N1为0,那永远走不出去,输出inf就行了.

问题就解决了.

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 using namespace std;
 5 int n;
 6 int gcd(int x,int y){return y==0?x:gcd(y,x%y);}
 7 int main(){
 8     int T; scanf("%d",&T);
 9     for (int Ts=1; Ts<=T; Ts++){
10         scanf("%d",&n);
11         int sum_pos=0,sum_neg=0,num_pos=0,num_neg=0;
12         for (int i=1; i<=n; i++){
13             int x; scanf("%d",&x);
14             if (x>0) sum_pos+=x,num_pos++; else sum_neg-=x,num_neg++;
15         }
16         printf("Case %d: ",Ts);
17         if (num_pos==0){printf("inf\n"); continue;}
18         int x=sum_pos+sum_neg,y=n-num_neg,K=gcd(x,y);
19         printf("%d/%d\n",x/K,y/K);
20     }
21     return 0;
22 }

时间: 2024-12-19 03:39:57

[LightOJ 1027] A Dangerous Maze的相关文章

LightOj 1027 A Dangerous Maze【概率】

题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1027 题意: 你面前有n个门,每个对应一个数字,若为正xi,代表xi分钟后你会从它走出迷宫,负数则说明你会在-xi分钟后回到出发点且失去记忆.求出去的时间的期望. 代码: #include <iostream> #include <stdio.h> #include <math.h> #include <string> #include

LightOJ - 1027 A Dangerous Maze 概率

题目大意:迷宫里面有n扇门,每扇门有相应的值,假设第i扇门的值为xi,如果xi > 0,那么xi分钟后,走该扇门就可以走出迷宫了,如果xi < 0,表示走了该扇门之后,需要abs(xi)分钟后才能回到原点,问走出迷宫的期望是多少 解题思路:假设有k扇门(正值用x表示,负值用y表示)期望是d的话 那么d = 1 / k * (x1 + x2 + x3 + .. xn) + 1 / k * (abs(y1) + abs((y2) + - + abs(ym) + m * d) 表示有1/k的概率选到

LightOJ 1027 A Dangerous Maze(期望)

https://cn.vjudge.net/problem/LightOJ-1027 题意:有n扇门,每扇门有个时间ti,选择正数的门可以在ti后带你走出迷宫,负数的门会在ti后带你回到起点,然后重新选择,每扇门被选中的概率是一样的,求期望. 思路: 做这种期望的问题必须得列一个方程来求解,不然无限写下去的话算不出. 设走出去的期望的E,对于第三个案例就是 E = 1/3 * 3  + 1/3( 6 + E) + 1/3 (9 + E),(选择第一扇门就直接出去,第二扇门先6分钟回去,然后再花期

LightOJ 1027 A Dangerous Maze 概率期望

题目链接: https://vjudge.net/problem/LightOJ-1027 题目描述: 有N个门, 每个门的选择是等概率的, 如果选择到正数, 我将在正数秒后逃出迷宫, 如果是负数就重新选, 问逃离的期望时间是多少 解题思路: 我这道题犯蠢了, 我认为是.....说不太明白, 看程序吧, 一下子就能看懂, 其中涉及到了一个约分, 但是我没想到就算是long long 也会溢出, 那么我将约分放进每次mul中呢? 也是不行的, 因为都是素数呢, 不是一样会溢出? 自己在半个小时后才

lightoj 1027 A Dangerous Maze 期望

设答案为r,cnt为x[i] >=0的个数 那么r = 1/n *  (Σx[i](x[i] >= 0) + ∑(r - x[i])(x[i] < 0)) 然后把r移项到一起解方程, 得到r = ∑|x[i]| / cnt,同除gcd.记得特判下x[i]均为负数的情况即可. 1 #include <cstdio> 2 #include <algorithm> 3 using namespace std; 4 int T,cas,n,tot,gcd,cnt; 5 i

light OJ 1027 A Dangerous Maze (期望)

1027 - A Dangerous Maze PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB You are in a maze; seeing n doors in front of you in beginning. You can choose any door you like. The probability for choosing a door is equal for all

Light OJ 1027 - A Dangerous Maze (数学-期望)

题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1027 题目大意: 一个迷宫, 有n个门,选择一个门花费为|ai|, 如果选择的门是正数, 那么直接走出迷宫, 否则重新回到起始位置.选择每一道门的概率是一样的.求走出迷宫的花费的期望. 解题思路:n个门中正数的门有s个, 那么一次选择出去的概率为s/n, 那么出去需要次数的期望为n/s. 对于每一次选择, 需要花费的平均时间为sum(|ai|)/n, 那么走出迷宫的花费的期望

Light OJ 1027 - A Dangerous Maze(概率)

题目大意: 你在一个迷宫里,你面前有n个门,你选择门的概率是一样的,每扇门有一个数字k, 加入这个数字是负数,那么这个门会花费你abs(k)分钟后把你带回原点, 假如这个数字是正数,他可以把你带出迷宫,并且花费时间是k. 问把你带出迷宫的预计期望时间是多少?如果无解输出 “inf”,输出结果要求是最简分数的形式. #include<cstdio> #include<cstring> #include<iostream> #include<algorithm>

lightoj-1027 - A Dangerous Maze(数学期望)

1027 - A Dangerous Maze PDF (English) Statistics ForumTime Limit: 2 second(s) Memory Limit: 32 MBYou are in a maze; seeing n doors in front of you in beginning. You can choose any door you like. The probability for choosing a door is equal for all do