PHP算法 《图》 之 理论基础

转载自:http://www.cnblogs.com/skywang12345/p/3691463.html

Ⅰ 图的基本概念

1. 图的定义

定义:图(graph)是由一些点(vertex)和这些点之间的连线(edge)所组成的;其中,点通常被成为"顶点(vertex)",而点与点之间的连线则被成为"边或弧"(edege)。通常记为,G=(V,E)。

2. 图的种类

根据边是否有方向,将图可以划分为:无向图有向图

2.1 无向图

上面的图G0是无向图,无向图的所有的边都是不区分方向的。G0=(V1,{E1})。其中,

(01) V1={A,B,C,D,E,F}。 V1表示由"A,B,C,D,E,F"几个顶点组成的集合。 
(02) E1={(A,B),(A,C),(B,C),(B,E),(B,F),(C,F), (C,D),(E,F),(C,E)}。 E1是由边(A,B),边(A,C)...等等组成的集合。其中,(A,C)表示由顶点A和顶点C连接成的边。

2.2 有向图

上面的图G2是有向图。和无向图不同,有向图的所有的边都是有方向的! G2=(V2,{A2})。其中,

(01) V2={A,C,B,F,D,E,G}。 V2表示由"A,B,C,D,E,F,G"几个顶点组成的集合。 
(02) A2={<A,B>,<B,C>,<B,F>,<B,E>,<C,E>,<E,D>,<D,C>,<E,B>,<F,G>}。 E1是由矢量<A,B>,矢量<B,C>...等等组成的集合。其中,矢量<A,B)表示由"顶点A"指向"顶点C"的有向边。

3. 邻接点和度

3.1 邻接点

一条边上的两个顶点叫做邻接点。 
例如,上面无向图G0中的顶点A和顶点C就是邻接点。

在有向图中,除了邻接点之外;还有"入边"和"出边"的概念。 
顶点的入边,是指以该顶点为终点的边。而顶点的出边,则是指以该顶点为起点的边。 
例如,上面有向图G2中的B和E是邻接点;<B,E>是B的出边,还是E的入边。

3.2 度

在无向图中,某个顶点的度是邻接到该顶点的边(或弧)的数目。 
例如,上面无向图G0中顶点A的度是2。

在有向图中,度还有"入度"和"出度"之分。 
某个顶点的入度,是指以该顶点为终点的边的数目。而顶点的出度,则是指以该顶点为起点的边的数目。 
顶点的度=入度+出度。 
例如,上面有向图G2中,顶点B的入度是2,出度是3;顶点B的度=2+3=5。

4. 路径和回路

路径:如果顶点(Vm)到顶点(Vn)之间存在一个顶点序列。则表示Vm到Vn是一条路径。 
路径长度:路径中"边的数量"。 
简单路径:若一条路径上顶点不重复出现,则是简单路径。 
回路:若路径的第一个顶点和最后一个顶点相同,则是回路。 
简单回路:第一个顶点和最后一个顶点相同,其它各顶点都不重复的回路则是简单回路。

5. 连通图和连通分量

连通图:对无向图而言,任意两个顶点之间都存在一条无向路径,则称该无向图为连通图。 对有向图而言,若图中任意两个顶点之间都存在一条有向路径,则称该有向图为强连通图。

连通分量:非连通图中的各个连通子图称为该图的连通分量。

6. 权

在学习"哈夫曼树"的时候,了解过"权"的概念。图中权的概念与此类似。

上面就是一个带权的图。

Ⅱ 图的存储结构

上面了解了"图的基本概念",下面开始介绍图的存储结构。图的存储结构,常用的是"邻接矩阵"和"邻接表"。

1. 邻接矩阵

邻接矩阵是指用矩阵来表示图。它是采用矩阵来描述图中顶点之间的关系(及弧或边的权)。 
假设图中顶点数为n,则邻接矩阵定义为:

下面通过示意图来进行解释。

图中的G1是无向图和它对应的邻接矩阵。

图中的G2是无向图和它对应的邻接矩阵。

通常采用两个数组来实现邻接矩阵:一个一维数组用来保存顶点信息,一个二维数组来用保存边的信息。 
邻接矩阵的缺点就是比较耗费空间。

2. 邻接表

邻接表是图的一种链式存储表示方法。它是改进后的"邻接矩阵",它的缺点是不方便判断两个顶点之间是否有边,但是相对邻接矩阵来说更省空间。

图中的G1是无向图和它对应的邻接矩阵。

图中的G2是无向图和它对应的邻接矩阵。

时间: 2024-11-29 07:31:47

PHP算法 《图》 之 理论基础的相关文章

图基本算法 图的表示方法 邻接矩阵 邻接表

要表示一个图G=(V,E),有两种标准的表示方法,即邻接表和邻接矩阵.这两种表示法既可用于有向图,也可用于无向图.通常采用邻接表表示法,因为用这种方法表示稀疏图(图中边数远小于点个数)比较紧凑.但当遇到稠密图(|E|接近于|V|^2)或必须很快判别两个给定顶点手否存在连接边时,通常采用邻接矩阵表示法,例如求最短路径算法中,就采用邻接矩阵表示. 图G=<V,E>的邻接表表示是由一个包含|V|个列表的数组Adj所组成,其中每个列表对应于V中的一个顶点.对于每一个u∈V,邻接表Adj[u]包含所有满

java 数据结构 图中使用的一些常用算法 图的存储结构 邻接矩阵:图的邻接矩阵存储方式是用两个数组来标示图。一个一位数组存储图顶点的信息,一个二维数组(称为邻接矩阵)存储图中边或者弧的信息。 设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为: 实例如下,左图是一个无向图。右图是邻接矩阵表示:

以下内容主要来自大话数据结构之中,部分内容参考互联网中其他前辈的博客. 图的定义 图是由顶点的有穷非空集合和顶点之间边的集合组成,通过表示为G(V,E),其中,G标示一个图,V是图G中顶点的集合,E是图G中边的集合. 无边图:若顶点Vi到Vj之间的边没有方向,则称这条边为无项边(Edge),用序偶对(Vi,Vj)标示. 对于下图无向图G1来说,G1=(V1, {E1}),其中顶点集合V1={A,B,C,D}:边集合E1={(A,B),(B,C),(C,D),(D,A),(A,C)}: 有向图:若

python数据结构与算法——图的基本实现及迭代器

本文参考自<复杂性思考>一书的第二章,并给出这一章节里我的习题解答. (这书不到120页纸,要卖50块!!,一开始以为很厚的样子,拿回来一看,尼玛.....代码很少,给点提示,然后让读者自己思考怎么实现) 先定义顶点和边 1 class Vertex(object): 2 def __init__(self, label=''): 3 self.label = label 4 def __repr__(self): 5 return 'Vertex(%s)' % repr(self.label

【系列文章】数据结构与算法——图

---恢复内容开始--- 接触C语言是很早以前的事了,大概是在初中二年级.后来发现只学语言,不学算法根本没用,于是乎萌发了学习数据结构和算法的想法,但一直没有什么实际进展.直到今天,才决定好好研究一番(ps:今年大一,甚是惭愧),顺便把学习过程记录在这一系列文章之中.好了,废话不多说,开始我这一系列的文章.文中可能有错误,如果你发现了,我恳请你帮我指出.谢谢. 图——图能很方便的描述一些实际问题,常用于寻找最优解类型的问题.其他相关概念,百度百科说的很清楚了. 学习图大概有以下几个过程. 一.创

字典序法生成全排列算法图

算法定义 首先看什么叫字典序,顾名思义就是按照字典的顺序(a-z, 1-9).以字典序为基础,我们可以得出任意两个数字串的大小.比如 "1" < "12"<"13". 就是按每个数字位逐个比较的结果.对于一个数字串,"123456789", 可以知道最小的串是 从小到大的有序串"123456789",而最大的串是从大到小的有序串"*987654321".这样对于"1

树的常见算法&amp;图的DFS和BFS

树及二叉树: 树:(数据结构中常见的树) 树的定义 树的存储:下面介绍三种不同的树的表示法:双亲表示法,.孩子表示法,.孩子兄弟表示法. 双亲表示法 我们假设以一组连续空间存储树的结点,同时在每个结点中,附设一个指示器指向其双亲结点到链表中的位置.也就是说每个结点除了知道自己之外还需要知道它的双亲在哪里. 它的结构特点是如图所示: 以下是我们的双亲表示法的结构定义代码: /*树的双亲表示法结点结构定义 */ #define MAXSIZE 100 typedef int ElemType; //

python数据结构与算法——图的最短路径(Bellman-Ford算法)解决负权边

1 # Bellman-Ford核心算法 2 # 对于一个包含n个顶点,m条边的图, 计算源点到任意点的最短距离 3 # 循环n-1轮,每轮对m条边进行一次松弛操作 4 5 # 定理: 6 # 在一个含有n个顶点的图中,任意两点之间的最短路径最多包含n-1条边 7 # 最短路径肯定是一个不包含回路的简单路径(回路包括正权回路与负权回路) 8 # 1. 如果最短路径中包含正权回路,则去掉这个回路,一定可以得到更短的路径 9 # 2. 如果最短路径中包含负权回路,则每多走一次这个回路,路径更短,则不

python数据结构与算法——图的最短路径(Floyd-Warshall算法)

使用Floyd-Warshall算法 求图两点之间的最短路径 不允许有负权边,时间复杂度高,思路简单 1 # 城市地图(字典的字典) 2 # 字典的第1个键为起点城市,第2个键为目标城市其键值为两个城市间的直接距离 3 # 将不相连点设为INF,方便更新两点之间的最小值 4 INF = 99999 5 G = {1:{1:0, 2:2, 3:6, 4:4}, 6 2:{1:INF, 2:0, 3:3, 4:INF}, 7 3:{1:7, 2:INF, 3:0, 4:1}, 8 4:{1:5, 2

python数据结构与算法——图的最短路径(Dijkstra算法)

1 # Dijkstra算法——通过边实现松弛 2 # 指定一个点到其他各顶点的路径——单源最短路径 3 4 # 初始化图参数 5 G = {1:{1:0, 2:1, 3:12}, 6 2:{2:0, 3:9, 4:3}, 7 3:{3:0, 5:5}, 8 4:{3:4, 4:0, 5:13, 6:15}, 9 5:{5:0, 6:4}, 10 6:{6:0}} 11 12 13 # 每次找到离源点最近的一个顶点,然后以该顶点为重心进行扩展 14 # 最终的到源点到其余所有点的最短路径 15

狄克斯特拉算法(图的最短路问题)

该算法思想就是   1)首先找离起点最近的点 2)然后对该点进行标记,并且对与该点相邻的点进行松弛(也就是更新周围点离起点的距离最小值) 3)继续找更新之后的图中离起点最近的未被标记的点 具体的实现方式有两种: 方式一时间复杂度是O(n^2),具体实现方式是通过两个for循环实现(其中内层循环负责找最近点以及遍历更新最近点附近的点,外层循环负责维持内层遍历的持续进行) 方式二时间复杂度是O(m*logn),具体实现是利用bfs结合优先队列来实现(优先队列代替了内层循环,bfs代替了外层for循环