FastDFS分布式文件系统设计原理

转载自http://blog.chinaunix.net/uid-20196318-id-4058561.html

FastDFS是一个开源的轻量级分布式文件系统,由跟踪服务器(tracker server)、存储服务器(storage server)和客户端(client)三个部分组成,主要解决了海量数据存储问题,特别适合以中小文件(建议范围:4KB < file_size <500MB)为载体的在线服务。

Storage server

Storage server(后简称storage)以组(卷,group或volume)为单位组织,一个group内包含多台storage机器,数据互为备份,存储空间以group内容量最小的storage为准,所以建议group内的多个storage尽量配置相同,以免造成存储空间的浪费。

以group为单位组织存储能方便的进行应用隔离、负载均衡、副本数定制(group内storage server数量即为该group的副本数),比如将不同应用数据存到不同的group就能隔离应用数据,同时还可根据应用的访问特性来将应用分配到不同的group来做负载均衡;缺点是group的容量受单机存储容量的限制,同时当group内有机器坏掉时,数据恢复只能依赖group内的其他机器,使得恢复时间会很长。

group内每个storage的存储依赖于本地文件系统,storage可配置多个数据存储目录,比如有10块磁盘,分别挂载在/data/disk1-/data/disk10,则可将这10个目录都配置为storage的数据存储目录。

storage接受到写文件请求时,会根据配置好的规则(后面会介绍),选择其中一个存储目录来存储文件。为了避免单个目录下的文件数太多,在storage第一次启动时,会在每个数据存储目录里创建2级子目录,每级256个,总共65536个文件,新写的文件会以hash的方式被路由到其中某个子目录下,然后将文件数据直接作为一个本地文件存储到该目录中。

Tracker server

Tracker是FastDFS的协调者,负责管理所有的storage server和group,每个storage在启动后会连接Tracker,告知自己所属的group等信息,并保持周期性的心跳,tracker根据storage的心跳信息,建立group==>[storage server list]的映射表。

Tracker需要管理的元信息很少,会全部存储在内存中;另外tracker上的元信息都是由storage汇报的信息生成的,本身不需要持久化任何数据,这样使得tracker非常容易扩展,直接增加tracker机器即可扩展为tracker cluster来服务,cluster里每个tracker之间是完全对等的,所有的tracker都接受storage的心跳信息,生成元数据信息来提供读写服务。

Upload file

FastDFS向使用者提供基本文件访问接口,比如upload、download、append、delete等,以客户端库的方式提供给用户使用。

选择tracker server

当集群中不止一个tracker server时,由于tracker之间是完全对等的关系,客户端在upload文件时可以任意选择一个tracker。

选择存储的group

当tracker接收到upload file的请求时,会为该文件分配一个可以存储该文件的group,支持如下选择group的规则: 1. Round robin,所有的group间轮询 2. Specified group,指定某一个确定的group 3. Load balance,剩余存储空间多多group优先

选择storage server

当选定group后,tracker会在group内选择一个storage server给客户端,支持如下选择storage的规则: 1. Round robin,在group内的所有storage间轮询 2. First server ordered by ip,按ip排序 3. First server ordered by priority,按优先级排序(优先级在storage上配置)

选择storage path

当分配好storage server后,客户端将向storage发送写文件请求,storage将会为文件分配一个数据存储目录,支持如下规则: 1. Round robin,多个存储目录间轮询 2. 剩余存储空间最多的优先

生成Fileid

选定存储目录之后,storage会为文件生一个Fileid,由storage server ip、文件创建时间、文件大小、文件crc32和一个随机数拼接而成,然后将这个二进制串进行base64编码,转换为可打印的字符串。

选择两级目录

当选定存储目录之后,storage会为文件分配一个fileid,每个存储目录下有两级256*256的子目录,storage会按文件fileid进行两次hash(猜测),路由到其中一个子目录,然后将文件以fileid为文件名存储到该子目录下。

生成文件名

当文件存储到某个子目录后,即认为该文件存储成功,接下来会为该文件生成一个文件名,文件名由group、存储目录、两级子目录、fileid、文件后缀名(由客户端指定,主要用于区分文件类型)拼接而成。

文件同步

写文件时,客户端将文件写至group内一个storage server即认为写文件成功,storage server写完文件后,会由后台线程将文件同步至同group内其他的storage server。

每个storage写文件后,同时会写一份binlog,binlog里不包含文件数据,只包含文件名等元信息,这份binlog用于后台同步,storage会记录向group内其他storage同步的进度,以便重启后能接上次的进度继续同步;进度以时间戳的方式进行记录,所以最好能保证集群内所有server的时钟保持同步。

storage的同步进度会作为元数据的一部分汇报到tracker上,tracke在选择读storage的时候会以同步进度作为参考。

比如一个group内有A、B、C三个storage server,A向C同步到进度为T1 (T1以前写的文件都已经同步到B上了),B向C同步到时间戳为T2(T2 > T1),tracker接收到这些同步进度信息时,就会进行整理,将最小的那个做为C的同步时间戳,本例中T1即为C的同步时间戳为T1(即所有T1以前写的数据都已经同步到C上了);同理,根据上述规则,tracker会为A、B生成一个同步时间戳。

Download file

客户端upload file成功后,会拿到一个storage生成的文件名,接下来客户端根据这个文件名即可访问到该文件。

跟upload file一样,在download file时客户端可以选择任意tracker server。

tracker发送download请求给某个tracker,必须带上文件名信息,tracker从文件名中解析出文件的group、大小、创建时间等信息,然后为该请求选择一个storage用来服务读请求。由于group内的文件同步时在后台异步进行的,所以有可能出现在读到时候,文件还没有同步到某些storage server上,为了尽量避免访问到这样的storage,tracker按照如下规则选择group内可读的storage。

1. 该文件上传到的源头storage - 源头storage只要存活着,肯定包含这个文件,源头的地址被编码在文件名中。

2. 文件创建时间戳==storage被同步到的时间戳 且(当前时间-文件创建时间戳) > 文件同步最大时间(如5分钟) - 文件创建后,认为经过最大同步时间后,肯定已经同步到其他storage了。

3. 文件创建时间戳 < storage被同步到的时间戳。 - 同步时间戳之前的文件确定已经同步了

4. (当前时间-文件创建时间戳) > 同步延迟阀值(如一天)。 - 经过同步延迟阈值时间,认为文件肯定已经同步了。

小文件合并存储

将小文件合并存储主要解决如下几个问题:

1. 本地文件系统inode数量有限,从而存储的小文件数量也就受到限制。

2. 多级目录+目录里很多文件,导致访问文件的开销很大(可能导致很多次IO)

3. 按小文件存储,备份与恢复的效率低

FastDFS在V3.0版本里引入小文件合并存储的机制,可将多个小文件存储到一个大的文件(trunk file),为了支持这个机制,FastDFS生成的文件fileid需要额外增加16个字节

1. trunk file id

2. 文件在trunk file内部的offset

3. 文件占用的存储空间大小 (字节对齐及删除空间复用,文件占用存储空间>=文件大小)

每个trunk file由一个id唯一标识,trunk file由group内的trunk server负责创建(trunk server是tracker选出来的),并同步到group内其他的storage,文件存储合并存储到trunk file后,根据其offset就能从trunk file读取到文件。

文件在trunk file内的offset编码到文件名,决定了其在trunk file内的位置是不能更改的,也就不能通过compact的方式回收trunk file内删除文件的空间。但当trunk file内有文件删除时,其删除的空间是可以被复用的,比如一个100KB的文件被删除,接下来存储一个99KB的文件就可以直接复用这片删除的存储空间。

HTTP访问支持

FastDFS的tracker和storage都内置了http协议的支持,客户端可以通过http协议来下载文件,tracker在接收到请求时,通过http的redirect机制将请求重定向至文件所在的storage上;除了内置的http协议外,FastDFS还提供了通过apache或nginx扩展模块下载文件的支持。

其他特性

FastDFS提供了设置/获取文件扩展属性的接口(setmeta/getmeta),扩展属性以key-value对的方式存储在storage上的同名文件(拥有特殊的前缀或后缀),比如/group/M00/00/01/some_file为原始文件,则该文件的扩展属性存储在/group/M00/00/01/.some_file.meta文件(真实情况不一定是这样,但机制类似),这样根据文件名就能定位到存储扩展属性的文件。

以上两个接口作者不建议使用,额外的meta文件会进一步“放大”海量小文件存储问题,同时由于meta非常小,其存储空间利用率也不高,比如100bytes的meta文件也需要占用4K(block_size)的存储空间。

FastDFS还提供appender file的支持,通过upload_appender_file接口存储,appender file允许在创建后,对该文件进行append操作。实际上,appender file与普通文件的存储方式是相同的,不同的是,appender file不能被合并存储到trunk file。

问题讨论

从FastDFS的整个设计看,基本上都以简单为原则。比如以机器为单位备份数据,简化了tracker的管理工作;storage直接借助本地文件系统原样存储文件,简化了storage的管理工作;文件写单份到storage即为成功、然后后台同步,简化了写文件流程。但简单的方案能解决的问题通常也有限,FastDFS目前尚存在如下问题(欢迎探讨)。

数据安全性

· 写一份即成功:从源storage写完文件至同步到组内其他storage的时间窗口内,一旦源storage出现故障,就可能导致用户数据丢失,而数据的丢失对存储系统来说通常是不可接受的。

· 缺乏自动化恢复机制:当storage的某块磁盘故障时,只能换存磁盘,然后手动恢复数据;由于按机器备份,似乎也不可能有自动化恢复机制,除非有预先准备好的热备磁盘,缺乏自动化恢复机制会增加系统运维工作。

· 数据恢复效率低:恢复数据时,只能从group内其他的storage读取,同时由于小文件的访问效率本身较低,按文件恢复的效率也会很低,低的恢复效率也就意味着数据处于不安全状态的时间更长。

· 缺乏多机房容灾支持:目前要做多机房容灾,只能额外做工具来将数据同步到备份的集群,无自动化机制。

存储空间利用率

· 单机存储的文件数受限于inode数量

· 每个文件对应一个storage本地文件系统的文件,平均每个文件会存在block_size/2的存储空间浪费。

· 文件合并存储能有效解决上述两个问题,但由于合并存储没有空间回收机制,删除文件的空间不保证一定能复用,也存在空间浪费的问题

负载均衡

· group机制本身可用来做负载均衡,但这只是一种静态的负载均衡机制,需要预先知道应用的访问特性;同时group机制也导致不可能在group之间迁移数据来做动态负载均衡。

备注

· 以上内容大部分为个人的理解,不能代表FastDFS的真实情况,发现问题请帮忙指出。

· 本文的配图均来自互联网,Chinaunix FastDFS讨论区UC技术博客,如涉及版权问题,请联系我删除。

转载请注明转Yun Notes,原文链接:分布式文件系统FastDFS设计原理

时间: 2024-10-13 12:24:34

FastDFS分布式文件系统设计原理的相关文章

FastDFS分布式文件系统配置与部署

? ? ? FastDFS分布式文件系统配置与部署 白宁超 2017年4月14日 ? ? 注:1.1-1.4节是对FastDFS基本配置,如果读者只是安装分布式文件系统,简单关注其原理建议阅读1.2节与1.5节.如果读者仅仅就是安装为目的建议直接阅读1.5节. 本人邮箱:[email protected] 主页网址:http://www.cnblogs.com/baiboy/ ? 目录 ? 1.1 分布式文件系统介绍????1 1.2 系统架构介绍????1 1.3 FastDFS性能方案???

FastDFS分布式文件存储

  存储能力是提供给上层业务系统以实现文件存取服务,这个存储能力为XDFS,即可扩展的分布式文件系统,实现的原理是封装了第三方的分布式存储系统实现的. 目前封装的第三方分布式系统包括FastDFS.Hadoop的HDFS,所提供的存储接口如下: 1  文件上传 2 文件断点上传 3 文件下载 4 文件断点下载 5  文件删除 6 获取文件大小 7  获取文件Http下载地址 8 批量获取文件Http下载地址 FastDFS适合的场景是互联网大中型企业的高并发文件存储服务,比如存储图片.音频.视频

我不是九爷 带你了解 Hadoop分布式文件系统设计要点与架构

Hadoop分布式文件系统设计要点与架构 Hadoop简介:一个分布式系统基础架构,由Apache基金会开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力高速运算和存储.Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有着高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上.而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据集(lar

FastDFS 分布式文件存储

FastDFS 分布式文件存储 什么是FastDFS? FastDFS是一个开源的轻量级的分布式文件系统.他解决了大量数据存储和负载均衡等问题.特别适合以中小文件(4KB < FileSize < 500MB)为载体的在线服务,如视频,音频,图片网站等等.FastDFS是一款开源的轻量级分布式文件系统,他是由纯 C 实现,支持Linux,FreeBSD等UNIX系统类,不是通用的文件系统,只能通过专有的API访问,目前提供了C.Java和PHP API为互联网应用量身定做,解决大容量文件存储问

1Nginx+fastdfs分布式文件存储

 准备,将所需的软件传到服务器上,服务器的列表如下: fastdfs-nginx-module_v1.15.tar.gz FastDFS_v4.06.tar.gz libevent-2.0.21-stable.tar.gz nginx-1.5.6.tar.gz openssl-1.0.1c.tar.gz pcre-8.36.tar.gz zlib-1.2.7.tar.gz 首先切换到root用户,命令是: su root 删除系统自带的低版本的libevent , 注意:这里的tracker

linux 服务器---FastDFS分布式文件服务器配置

一.先上传所需要的文件 通过SecureCRT连接服务器,使用sftp功能上传,文件上传后位于 /~目录下. 二.先安装libvent工具包 yum -y install libevent 三.安装libfastcommonV1.0.7工具包. 切换到~目录 ,然后解压缩 tar zxf libfastcommonV1.0.7.tar.gz 进入libfastcommonV1.0.7目录中,安装 cd libfastcommonV1.0.7 ./make.sh ./make.sh install

fastdfs分布式文件系统文件上传、下载、删除交互过程讲解

在讲解fastdfs的上传.下载和删除流程之前,我们先介绍fastdfs中的工程流程:首先客户端client 调用fastdfs的api,获取可用的tracker server , 再调用tracker server 获取可用的组,tracker server 通过负载均衡返回一个最优的storage server,这样客户端与client就建立了连接,client就可 以调用storage server对文件进行上传.删除和追加的操作. 下面我们将结合时序图的方式给大家详细讲解fastdfs的

Hadoop HDFS分布式文件系统设计要点与架构

Hadoop简介:一个分布式系统基础架构,由Apache基金会开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力高速运算和存储.Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有着高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上.而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序.HDF

Hadoop HDFS分布式文件系统设计要点与架构(转摘)

Hadoop简介:一个分布式系统基础架构,由Apache基金会开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力高速运算和存储.Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有着高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上.而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序.HDF