基于fMRI生理噪声抑制方法知识的应用研究

第六章 基于fMRI生理噪声抑制方法知识的应用研究

6.1 引言

生理噪声抑制研究的应用可分为两个方向,纵向研究应用和横向研究应用。将生理噪声抑制操作融入fMRI信号分析的预处理环节中,属于纵向研究应用。比如,Kelley等人[74]利用python编程语言编写的生理噪声处理工具包PhysioNoise;牛津大学功能磁共振研究中心推出的FSL(FMRIB Software Library)软件包[75]融入了生理噪声抑制预处理组件PNM(Physiological Noise Modelling)[76]。在横向研究上,可利用生理噪声研究所取得的成果为其他fMRI信号分析算法或模型提供支持[77]。本文第三章和第四章所提的方法都属于纵向研究。此外,本文设计了一个具体的横向研究应用:将生理噪声知识融入到ICA的成分排序问题上。通过对ICA分解后的独立成分去除生理噪声,可得到一个新的特征。利用该特征可较好地解决ICA排序中需要先验知识的问题,实现了对fMRI信号的盲分析。

Youssef等人在文献[78]中提出一种利用CCA对独立成分进行排序的方法。虽然Youssef等人的方法可以对分解后的独立成分进行合理排序,但是却需要引入如实验设计相关等参考信息。同样基于典型相关分析,王世杰等人[77]提出利用大脑灰质区域和脑脊液区域中包含成分的差异性,先分别对灰质数据和和脑脊液数据进行ICA分解,得到两个独立成分集合,然后对这两个独立成分集合进行CCA排序的方法。这种方法是直接从脑脊液数据中提取生理噪声成分,不需要任何先验知识。但在实际fMRI数据中,解剖学分割得到的脑脊液模板往往过大从而可能导致提取的生理噪声成分也有可能包含功能信号成分,此时基于CCA排序得到的结果并不一定能得到真实数据中的激活成分,使得方法不够鲁棒。若可以构造一个与生理噪声基本正交的数据集,然后衡量ICA成分对此数据集的依赖程度,则可得到一个较为可信的排序结果。

为此与王世杰等人的方法相比,本章提出了一种通过对(1)灰质数据和全脑数据独立成分之间的时域相关性,以及(2)与生理噪声正交的灰质数据和全脑数据独立成分之间的时域相关性,分别利用典型相关分析进行计算,最终由两种结果综合得到ICA成分的排序依据。此方法可鲁棒地对功能独立成分进行自动排序,且不需要任何先验知识。

在真实fMRI数据上进行评测,证明了所提方法的有效性。该方法不需要已知实验任务刺激范式作为先验知识,并且所得到的两个排序结果具有一定正交性,通过此方法可以得到更鲁棒的结果。

6.2 ICA的基本思想

6.3 CCA排序的基本原理

6.4 基于生理噪声知识的排序方法模型

6.5 实验

这里的实验数据集,采用3.5节中的视觉刺激实验数据,预处理方法也和3.5.1小节保持一致。后面章节在对比提取出的ICA成分时,需要与实验刺激范式进行对比,在此画出其波形图如图6-1所示:

图6-1 视觉实验刺激范式block

图6-2 提取神经组织模板示意图。(a)SPM8分割提取的灰质模板;

(b)Churchill等人方法提取的神经组织模板(二值化图);(c)两个模板叠加的结果。

6.5.2 ICA分解得到的源信号

对全脑数据进行ICA分解并估计得到19个独立的信号成分,如图6-3所示,其中第18个成分与任务刺激范式的相似度最高,可认为是激活成分:

图6-3 ICA提取全脑数据得到未排序的19个独立成分

对CSF数据进行ICA分解得到5个独立的信号成分,如图6-4所示,其中第5个成分与任务刺激范式的相似度最高,会影响最后CCA的排序结果:

图6-4 ICA提取CSF数据得到未排序的5个独立成分

对神经组织数据进行ICA分解得到5个独立的信号成分,如图6-5所示,其中第3个成分与任务刺激范式的相似度最高,可认为是激活成分:

图6-5 ICA提取神经组织数据得到未排序的5个独立成分

对与生理噪声正交的灰质数据进行ICA分解得到5个独立的信号成分,如图6-6所示,可见基本不包含激活成分。

图6-6 ICA提取与生理噪声正交的灰质数据得到未排序的5个独立成分

6.5.3 CCA排序结果

基于CCA排序,然后分别以图6-4,图6-5及图6-6中的信号集为参考数据集,可得到图6-3中各成分对这三个数据集的依赖程度,具体排序结果如表6-1所示。表6-1只选取了各排序结果的前10个展示结果。因为剩余8个独立成分的排序结果对于最终结果不产生作用,所以这里未做展示。

其中,对CSF数据以升序进行排列,因为某个独立信号成分对CSF中的生理噪声依赖越小,则该信号成分越有可能是功能激活成分。而对神经组织及神经组织残差数据进行降序排列,若对这两个数据集中的信号依赖越大,则越有可能是功能激活成分。而从表6-1(a)中可以发现,全脑数据第18个独立成分在以CSF为参考数据时,无法有效地提取出来作为激活信号成分。

表6-1 利用CCA分别对三种参考数据集的排序结果


(a) CSF升序

Index_csf指标


(b) NT降序

Index_NT指标


(c) NT残差降序

Index_clean指标


M值


序号


M值


序号


M值


序号


0.193


16


1.361


18


1.585


6


0.27


7


1.36


14


1.325


18


0.322


10


1.331


3


1.261


15


0.443


1


1.265


2


1.167


14


0.476


9


1.181


6


1.134


5


0.579


5


0.961


15


0.98


17


0.613


17


0.873


13


0.865


2


0.686


8


0.856


12


0.852


10


0.696


11


0.823


19


0.831


8


0.759


19


0.81


5


0.814


19

但是,以神经组织数据集及与生理噪声正交的数据集为参考成分时,全脑数据第18个独立成分能够稳定地排序到较高位置,如表6-1(b)及6-1(c)所示。最终,综合表6-1(b)及6-1(c)的排序结果,可将第18个成分提取出来作为功能信号成分。第18个成分对应的空间激活位置如图6-7所示,枕叶位置符合本实验对应的视觉刺激试验,也和本文3.5.4小节中的结果保持一致。

图6-7 第18个独立成分对应的激活图

6.6 本章小结

本章提出了一种新的ICA排序方法,通过对神经组织数据和全脑数据独立成分之间的时域相关性,以及与生理噪声正交的神经组织数据和全脑数据独立成分之间的时域相关性,分别利用CCA计算两个集合之间相互依赖关系。该方法不需要任何实验先验信息,能够很好地识别出激活相关的功能信号成分,最终实现了对fMRI信号的盲分析。在真实fMRI视觉刺激实验数据上的测评分析,证明了该方法的有效性及可靠性。通过该方法,说明了在生理噪声抑制方法上的探索除了可以作为fMRI预处理纵向研究的一部分,也可以为fMRI横向研究应用提供支持。

谢谢我的导师曾先生,让我知道,读硕士、做学术不会投机是没有前途的,做任何事情没有RMB是没有出路的。

当时的我比较幼稚,还对学术充满了向往,还总以为自己在创造知识的新边疆,这些东西始终学不来。

所以,我是没有出路的,只能干干苦力。

那就好好做个苦力吧。

好好做个苦力。

本文单独的权限声明:未经许可,严禁任何形式的转载。

参考文献

[1] Ogawa S, Lee T M, Kay A R, et al. Brain magnetic resonance imaging with contrast dependent on blood oxygenation[J]. Proceedings of the National Academy of Sciences, 1990, 87(24): 9868-9872.

[2] Kwong K K, Belliveau J W, Chesler D A, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation[J]. Proceedings of the National Academy of Sciences, 1992, 89(12): 5675-5679.

[3] Wintermark M, Sesay M, Barbier E, et al. Comparative overview of brain perfusion imaging techniques[J]. Stroke, 2005, 36(9): e83-e99.

[4] Greve D N, Brown G G, Mueller B A, et al. A Survey of the Sources of Noise in fMRI[J]. Psychometrika, 2013, 78(3): 396-416.

[5] Della-Maggiore V, Chau W, Peres-Neto P R, et al. An empirical comparison of SPM preprocessing parameters to the analysis of fMRI data[J]. Neuroimage, 2002, 17(1): 19-28.

[6] Ardekani B A, Bachman A H, Helpern J A. A quantitative comparison of motion detection algorithms in fMRI[J]. Magnetic resonance imaging, 2001, 19(7): 959-963.

[7] Buxton R B. Introduction to functional magnetic resonance imaging: principles and techniques[M]. Cambridge University Press, 2009.

[8] Glover G H, Li T Q, Ress D. Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR[J]. Magnetic Resonance in Medicine, 2000, 44(1): 162-167.

[9] Wang S J, Luo L M, Liang X Y, et al. Estimation and removal of physiological noise from undersampled multi-slice fMRI data in image space[C]//Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the. IEEE, 2006: 1371-1373.

[10] Churchill N W, Strother S C. PHYCAA+: An optimized, adaptive procedure for measuring and controlling physiological noise in BOLD fMRI[J]. NeuroImage, 2013, 82: 306-325.

[11] Lund T E, Madsen K H, Sidaros K, et al. Non-white noise in fMRI: does modelling have an impact?[J]. Neuroimage, 2006, 29(1): 54-66.

[12] Piaggi P, Menicucci D, Gentili C, et al. Adaptive filtering for removing nonstationary physiological noise from resting state fMRI BOLD signals[C]. Intelligent Systems Design and Applications (ISDA), 2011 11th International Conference on. IEEE, 2011: 237-241.

[13] Foster P S, Harrison D W. The covariation of cortical electrical activity and cardiovascular responding[J]. International journal of psychophysiology, 2004, 52(3): 239-255.

[14] Birn R M, Murphy K, Handwerker D A, et al. fMRI in the presence of task-correlated breathing variations[J]. Neuroimage, 2009, 47(3): 1092-1104.

[15] Birn R M, Smith M A, Jones T B, et al. The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration[J]. Neuroimage, 2008, 40(2): 644-654.

[16] Chang C, Glover G H. Relationship between respiration, end-tidal CO 2, and BOLD signals in resting-state fMRI[J]. Neuroimage, 2009, 47(4): 1381-1393.

[17] Dagli M S, Ingeholm J E, Haxby J V. Localization of cardiac-induced signal change in fMRI[J]. Neuroimage, 1999, 9(4): 407-415.

[18] Perlbarg V, Bellec P, Anton J L, et al. CORSICA: correction of structured noise in fMRI by automatic identification of ICA components[J]. Magnetic resonance imaging, 2007, 25(1): 35-46.

[19] Birn R M, Diamond J B, Smith M A, et al. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI[J]. Neuroimage, 2006, 31(4): 1536-1548.

[20] Shmueli K, van Gelderen P, de Zwart J A, et al. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal[J]. Neuroimage, 2007, 38(2): 306-320.

[21] Smith A T, Singh K D, Balsters J H. A comment on the severity of the effects of non-white noise in fMRI time-series[J]. NeuroImage, 2007, 36(2): 282-288.

[22] Friston K J, Holmes A P, Worsley K J, et al. Statistical parametric maps in functional imaging: a general linear approach[J]. Human brain mapping, 1994, 2(4): 189-210.

[23] Friston K J, Jezzard P, Turner R. Analysis of functional MRI time‐series[J]. Human brain mapping, 1994, 1(2): 153-171.

[24] Friston K J, Holmes A P, Poline J B, et al. Analysis of fMRI time-series revisited[J]. Neuroimage, 1995, 2(1): 45-53.

[25] Triantafyllou C, Wald L L, Wiggins C J, et al. Physiological noise in fMRI: Comparison at 1.5 T, 3T and 7T and dependence on image esolution[C]//Proceedings of the 12th Annual Meeting of ISMRM, Kyoto, Japan. 2004: 1071.

[26] Yacoub E, De Moortele V, Shmuel A, et al. Signal and noise characteristics of  SE and GE BOLD fMRI at 7 T in humans[J]. Neuroimage, 2005, 24(3): 738-750.

[27] Geissler A, Gartus A, Foki T, et al. Contrast‐to‐noise ratio (CNR) as a quality parameter in fMRI[J]. Journal of Magnetic Resonance Imaging, 2007, 25(6): 1263-1270.

[28] Kruggel F, Von Cramon D Y, Descombes X. Comparison of filtering methods for fMRI datasets[J]. NeuroImage, 1999, 10(5): 530-543.

[29] Tanabe J, Miller D, Tregellas J, et al. Comparison of detrending methods for optimal fMRI preprocessing[J]. NeuroImage, 2002, 15(4): 902-907.

[30] Hu X, Kim S G. Reduction of physiological noise in functional MRI using navigator echo[J]. Magn. Reson. Med, 1994, 31: 495-503.

[31] Guimaraes A R, Melcher J R, Talavage T M, et al. Imaging subcortical auditory activity in humans[J]. Human brain mapping, 1998, 6(1): 33.

[32] Hu X, Le T H, Parrish T, et al. Retrospective estimation and correction of physiological fluctuation in functional MRI[J]. Magnetic resonance in medicine, 1995, 34(2): 201-212.

[33] Kang J K, Bénar C G, Al-Asmi A, et al. Using patient-specific hemodynamic response functions in combined EEG-fMRI studies in epilepsy[J]. Neuroimage, 2003, 20(2): 1162-1170.

[34] Ciuciu P, Poline J B, Marrelec G, et al. Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment[J]. Medical Imaging, IEEE Transactions on, 2003, 22(10): 1235-1251.

[35] Gitelman D R, Penny W D, Ashburner J, et al. Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution[J]. Neuroimage, 2003, 19(1): 200-207.

[36] Chang C, Cunningham J P, Glover G H. Influence of heart rate on the BOLD signal: the cardiac response function[J]. Neuroimage, 2009, 44(3): 857-869.

[37] Särkkä S, Solin A, Nummenmaa A, et al. Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER[J]. NeuroImage, 2012, 60(2): 1517-1527.

[38] Behzadi Y, Restom K, Liau J, et al. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI[J]. Neuroimage, 2007, 37(1): 90-101.

[39] Song X, Ji T, Wyrwicz A M. Baseline drift and physiological noise removal in high field fmri data using kernel pca[C].Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on. IEEE, 2008: 441-444.

[40] Song X, Chen N K, Gaur P. Identification and attenuation of physiological noise in fMRI using kernel techniques[C]//Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. IEEE, 2011: 4852-4855.

[41] Rasmussen P M, Abrahamsen T J, Madsen K H, et al. Nonlinear denoising and analysis of neuroimages with kernel principal component analysis and pre-image estimation[J]. NeuroImage, 2012, 60(3): 1807-1818.

[42] Rodriguez P A, Correa N M, Eichele T, et al. Quality map thresholding for de-noising of complex-valued fMRI data and its application to ICA of fMRI[J]. Journal of signal processing systems, 2011, 65(3): 497-508.

[43] Thomas C G, Harshman R A, Menon R S. Noise reduction in BOLD-based fMRI using component analysis[J]. Neuroimage, 2002, 17(3): 1521-1537.

[44] McKeown M J, Hansen L K, Sejnowsk T J. Independent component analysis of functional MRI: what is signal and what is noise?[J]. Current opinion in neurobiology, 2003, 13(5): 620-629.

[45] Starck T, Remes J, Nikkinen J, et al. Correction of low-frequency physiological noise from the resting state BOLD fMRI—Effect on ICA default mode analysis at 1.5 T[J]. Journal of neuroscience methods, 2010, 186(2): 179-185.

[46] Boubela R N, Kalcher K, Huf W, et al. Beyond noise: using temporal ICA to extract meaningful information from high-frequency fMRI signal fluctuations during rest[J]. Frontiers in human neuroscience, 2013, 7.

[47] Salimi-Khorshidi G, Douaud G, Beckmann C F, et al. Automatic Denoising of Functional MRI Data: Combining Independent Component Analysis and Hierarchical Fusion of Classifiers[J]. NeuroImage, 2014.

[48] Friman O, Borga M, Lundberg P, et al. Exploratory fMRI analysis by autocorrelation maximization[J]. NeuroImage, 2002, 16(2): 454-464.

[49] Borga M, Friman O, Lundberg P, et al. A canonical correlation approach to exploratory data analysis in fMRI[C]//Proceedings of the ISMRM Annual Meeting, Honolulu, Hawaii. 2002.

[50] Friman O, Borga M, Lundberg P, et al. Adaptive analysis of fMRI data[J]. NeuroImage, 2003, 19(3): 837-845.

[51] Nandy R, Cordes D. Improving the spatial specificity of canonical correlation analysis in fMRI[J]. Magnetic Resonance in Medicine, 2004, 52(4): 947-952.

[52] Li M, Liu Y, Feng G, et al. OI and fMRI signal separation using both temporal and spatial autocorrelations[J]. Biomedical Engineering, IEEE Transactions on, 2010, 57(8): 1917-1926.

[53] Zöllei L, Panych L, Grimason E, et al. Exploratory identification of cardiac noise in fMRI images[M]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003. Springer Berlin Heidelberg, 2003: 475-482.

[54] Churchill N W, Yourganov G, Spring R, et al. PHYCAA: data-driven measurement and removal of physiological noise in BOLD fMRI[J]. Neuroimage, 2012, 59(2): 1299-1314.

[55] 刘亚东, 胡德文, 周宗潭, 等. 功能磁共振数据结构性噪声分析[J]. 电子学报, 2007, 35(10): 1954-1960.

[56] Purdon P L, Weisskoff R M. Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI[J]. Human brain mapping, 1998, 6(4): 239-249.

[57] Woolrich M W, Ripley B D, Brady M, et al. Temporal autocorrelation in univariate linear modeling of FMRI data[J]. Neuroimage, 2001, 14(6): 1370-1386.

[58] Bullmore E, Long C, Suckling J, et al. Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains[J]. Human brain mapping, 2001, 12(2): 61-78.

[59] Small M, Judd K. Detecting periodicity in experimental data using linear modeling techniques[J]. Physical Review E, 1999, 59(2): 1379.

[60] Frank L R, Buxton R B, Wong E C. Estimation of respiration‐induced noise fluctuations from undersampled multislice fMRI data†[J]. Magnetic Resonance in Medicine, 2001, 45(4): 635-644.

[61] Biswal B, Deyoe E A, Hyde J S. Reduction of physiological fluctuations in fMRI using digital filters[J]. Magnetic Resonance in Medicine, 1996, 35(1): 107-113.

[62] Ash T, Suckling J, Walter M, et al. Detection of physiological noise in resting state fMRI using machine learning[J]. Human brain mapping, 2011.

[63] Hotelling H. Canonical correlation analysis (cca)[J]. Journal of Educational Psychology, 1935.

[64] 肖柯, 苏敏, 吴飞. 基于 CCA 的 fMRI 时空模型数据处理的方法[J]. 重庆大学学报: 自然科学版, 2006, 29(5): 124-127.

[65] Schölkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural computation, 1998, 10(5): 1299-1319.

[66] Mika S, Schölkopf B, Smola A J, et al. Kernel PCA and De-Noising in Feature Spaces[C]//NIPS. 1998, 11: 536-542.

[67] Auditory fMRI dataset: http://www.fil.ion.ucl.ac.uk/spm/data/auditory/.

[68] Welvaert M, Rosseel Y. How ignoring physiological noise can bias the conclusions from fMRI simulation results[J]. Journal of neuroscience methods, 2012, 211(1): 125-132.

[69] Wink A M, Roerdink J B T M. BOLD noise assumptions in fMRI[J]. International journal of biomedical imaging, 2006, 2006.

[70] Solo V, Noh J. An EM algorithm for Rician fMRI activation detection[C]//Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007. 4th IEEE International Symposium on. IEEE, 2007: 464-467.

[71] Strother S C, Anderson J, Hansen L K, et al. The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework[J]. NeuroImage, 2002, 15(4): 747-771.

[72] Strother S, Oder A, Spring R, et al. The NPAIRS computational statistics framework for data analysis in neuroimaging[M]//Proceedings of COMPSTAT‘2010. Physica-Verlag HD, 2010: 111-120.

[73] Haxby J V, Gobbini M I, Furey M L, et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex[J]. Science, 2001, 293(5539): 2425-2430.

[74] Kelley D J, Oakes T R, Greischar L L, et al. Automatic physiological waveform processing for fMRI noise correction and analysis[J]. PloS one, 2008, 3(3): e1751.

[75] Brooks J C W, Beckmann C F, Miller K L, et al. Physiological noise modelling for spinal functional magnetic resonance imaging studies[J]. Neuroimage, 2008, 39(2): 680-692.

[76] Smith S M, Jenkinson M, Woolrich M W, et al. Advances in functional and structural MR image analysis and implementation as FSL[J]. Neuroimage, 2004, 23: S208-S219.

[77] Shijie W, Limin L, Weiping Z. Robust ordering of independent spatial components of fMRI data using canonical correlation analysis[M]//Image Analysis and Recognition. Springer Berlin Heidelberg, 2006: 672-679.

[78] Youssef T, Youssef A B M, LaConte S M, et al. Robust ordering of independent components in functional magnetic resonance imaging time series data using Canonical correlation analysis[C]//Medical Imaging 2003. International Society for Optics and Photonics, 2003: 332-340.

[79] McKeown M J, Makeig S, Brown G G, et al. Analysis of fMRI data by blind separation into independent spatial components[R]. NAVAL HEALTH RESEARCH CENTER SAN DIEGO CA, 1997.

[80] Jones T B, Bandettini P A, Birn R M. Integration of motion correction and physiological noise regression in fMRI[J]. Neuroimage, 2008, 42(2): 582-590.

[81] Triantafyllou C, Hoge R D, Wald L L. Effect of spatial smoothing on physiological noise in high-resolution fMRI[J]. Neuroimage, 2006, 32(2): 551-557.

[82] Churchill N W, Oder A, Abdi H, et al. Optimizing preprocessing and analysis pipelines for single‐subject fMRI. I. Standard temporal motion and physiological noise correction methods[J]. Human brain mapping, 2012, 33(3): 609-627.

时间: 2025-01-31 21:40:24

基于fMRI生理噪声抑制方法知识的应用研究的相关文章

基于CCA的fMRI信号生理噪声抑制方法

第三章 基于CCA的fMRI信号生理噪声抑制方法 3.1 引言 典型相关分析作为一种多元变量相关分析方法,可以用来提取出自相关的信号子空间,因而被广泛地用来做激活信号的提取及噪声成分的估计[48][55].基于CCA,Churchill等人[10]提出了对fMRI残差数据做成分分解,进而估计出具有自相关特性的生理噪声成分,并在真实数据集上取得了较为显著的噪声抑制效果.但该方法需要先知道实验的刺激范式作为先验知识,然后去除fMRI信号中刺激范式相关的成分以得到残差数据.这里对功能信号与噪声信号进行

了解移动用户的隐私期望:一种基于推荐的Crowdsourcing方法

应学习之需,最近一段时间阅读了一篇论文,特写下总结,若有纰漏,还望指出. 目录 引言 推荐机制 1.1 为什么要了解移动用户的隐私期望 1.移动设备的广泛使用存在一些潜在的隐私威胁和信息泄漏. 2.系统供应商针对这个问题已经提出了相应措施,例如:苹果的iOS系统可以让用户控制应用是否可以访问特定的敏感数据源.Android平台同样也有类似的细粒度权限控制机制.然而,存在自身缺点:不包括所有的用户都具备知识背景能够正确地进行隐私配置.同时是一项乏味且具有挑战性的工作.用户体验不高. 3.没有一个简

机器学习四 -- 基于概率论的分类方法:朴素贝叶斯

基于概率的分类方法:朴素贝叶斯 贝叶斯决策理论 朴素贝叶斯是贝叶斯决策理论的一部分,所以在讲解朴素贝叶斯之前我们先快速简单了解一下贝叶斯决策理论知识. 贝叶斯决策理论的核心思想:选择具有最高概率的决策.比如我们毕业选择就业方向,选择C++方向的概率为0.3,选择Java的概率为0.2,选择机器学习的概率为0.5.那么我们就把这样的一位毕业生就业方向归类为机器学习方向. 条件概率 什么是条件概率?事件A在另一个事件B已知发生条件下的发生概率,记为P(A|B),读作“在B条件下A的概率”. 例子1:

基于社交心理过程满足的LBS社交应用研究

摘要:随着网络技术的普及和基于网络技术的社会化媒体的发展,现实生活中人际交往逐渐向网络世界平移.本文通过对社会交往过程的心理过程分析和社交类型的研究,总结了现实社交和网络社交的局限性.LBS社交应用是介于社会交往和网络交往之间的形式,它搭建了线上相识和线下交往的平台.作为一种炙手可热的社交媒介,基于LBS的社交应用通过真实的体验.临近空间的优势以及线下互动形式规避了不同社交类型的局限性,满足了用户不同社交阶段的心理需求. 关键词:社会交往 网络社交 LBS社交应用 一.社会交往 1.1社会交往与

数据库分表和分库的原理及基于thinkPHP的实现方法

为什么要分表,分库: 当我们的数据表数据量,访问量很大,或者是使用频繁的时候,一个数据表已经不能承受如此大的数据访问和存储,所以,为了减轻数据库的负担,加快数据的存储,就需要将一张表分成多张,及将一类数据存入不同的几张表,当分表已经不能满足需求是,我们还可以分库,及用几个数据库存储. 分表会随着需求和功能的不同有不同的实现方法,下面是我做项目中的一个例子: 需求:product,product_price两张表是一对多的关系,及产品和产品每日的价格,一个产品对应几种价格,现在由于产品表数据量很大

基于图像分割的立体匹配方法

1.绪论 立体匹配是三维重建系统的关键步骤,并且作为一种非接触测量方法在工业以及科研领域具有重要的应用价值.为了完成匹配工作以及获取场景的稠密视差图,可以通过构建能量函数对应立体匹配的约束条件.复杂能量函数的全局最优解通常是NP难问题.相对于其他全局优化算法相比如模拟退火.梯度下降.动态规划等,图割算法不仅精度高,收敛速度快,并且对于光照变化.弱纹理等区域的匹配效果也比其他算法好. 2.图割算法 计算机视觉领域的大部分问题可以转换为标号问题,在立体匹配中视差的求解就是对图像的像素在视察范围内的离

浅谈分词算法(2)基于词典的分词方法

[TOC] 前言 在浅谈分词算法(1)分词中的基本问题中我们探讨了分词中的基本问题,也提到了基于词典的分词方法.基于词典的分词方法是一种比较传统的方式,这类分词方法有很多,如:正向最大匹配(forward maximum matching method, FMM).逆向最大匹配(backward maximum matching method,BMM).双向扫描法.逐词遍历法.N-最短路径方法以及基于词的n-gram语法模型的分词方法等等.对于这类方法,词典的整理选择在其中占到了很重要的作用,本

第四章:基于概率论的分类方法: 朴素贝叶斯

本章内容□使用概率分布进行分类□学习朴素贝叶斯分类器□解析RSS源数据口使用朴素贝叶斯来分析不同地区的态度 前两章我们要求分类器做出艰难决策,给出“该数据实例属于哪一类”这类问题的明确答案.不过,分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同时给出这个猜测的概率估计值.       概率论是许多机器学习算法的基础,所以深刻理解这一主题就显得十分重要.第3章在计算特征值取某个值的概率时涉及了一些概率知识,在那里我们先统计特征在数据集中取某个特定值的次数,然后除以数据集的

机器学习实战读书笔记(四)基于概率论的分类方法:朴素贝叶斯

4.1 基于贝叶斯决策理论的分类方法 朴素贝叶斯 优点:在数据较少的情况下仍然有效,可以处理多类别问题 缺点:对于输入数据的准备方式较为敏感 适用数据类型:标称型数据 贝叶斯决策理论的核心思想:选择具有最高概率的决策. 4.2 条件概率 4.3 使用条件概率来分类 4.4 使用朴素贝叶斯进行文档分类 朴素贝叶斯的一般过程: 1.收集数据 2.准备数据 3.分析数据 4.训练算法 5.测试算法 6.使用算法 朴素贝叶斯分类器中的另一个假设是,每个特征同等重要. 4.5 使用Python进行文本分类