Dijkstra最短路算法

Dijkstra算法思想

Dijkstra算法思想为:设G=(V,E)是一个带权有向图(无向可以转化为双向有向),把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将 加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

Dijkstra算法具体步骤  

(1)初始时,S只包含源点,即S={v},v的距离dist[v]为0。U包含除v外的其他顶点,U中顶点u距离dis[u]为边上的权值(若v与u有边) )或∞(若u不是v的出边邻接点即没有边<v,u>)。

(2)从U中选取一个距离v(dist[k])最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

(3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u∈ U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权(即如果dist[k]+w[k,u]<dist[u],那么把dist[u]更新成更短的距离dist[k]+w[k,u])。

(4)重复步骤(2)和(3)直到所有顶点都包含在S中(要循环n-1次)

Dijkstra算法实现

直接实现

最简单的实现方法就是,在每次循环中,再用一个循环找距离最短的点,然后用任意的方法更新与其相邻的边,时间复杂度显然为O(n2)

对于空间复杂度:如果只要求出距离,只要n的附加空间保存距离就可以了(距离小于当前距离的是已访问的节点,对于距离相等的情况可以比较编号或是特殊处理一下)。如果要求出路径则需要另外V的空间保存前一个节点,总共需要2n的空间。

/*********************************
*   最短路径---Dijkstra算法实现
*      HDU:2544
*   BLOG:www.cnblogs.com/newwy
*   AUTHOR:Wang Yong
**********************************/
#include <iostream>
#define MAX 100
#define INF 1000000000
using namespace std;
 int dijkstra (int mat[][MAX],int n, int s,int f)
 {
     int dis[MAX];
     int mark[MAX];//记录被选中的结点
     int i,j,k = 0;
     for(i = 0 ; i < n ; i++)//初始化所有结点,每个结点都没有被选中
         mark[i] = 0;
    for(i = 0 ; i < n ; i++)//将每个结点到start结点weight记录为当前distance
    {
        dis[i] = mat[s][i];
        //path[i] = s;
    }
    mark[s] = 1;//start结点被选中
    //path[s] = 0;
    dis[s] = 0;//将start结点的的距离设置为0
    int min ;//设置最短的距离。
    for(i = 1 ; i < n; i++)
    {
        min = INF;
        for(j = 0 ; j < n;j++)
        {
            if(mark[j] == 0  && dis[j] < min)//未被选中的结点中,距离最短的被选中
            {
                min = dis[j] ;
                k = j;
            }
        }
        mark[k] = 1;//标记为被选中
        for(j = 0 ; j < n ; j++)
        {
            if( mark[j] == 0  && (dis[j] > (dis[k] + mat[k][j])))//修改剩余结点的最短距离
            {
                dis[j] = dis[k] + mat[k][j];
            }
        }
    }
    return dis[f];
 }
 int mat[MAX][MAX];
int main()
{
    int n,m;
    while(scanf("%d %d",&n,&m))
    {
        int a,b,dis;
        if(n == 0 || m == 0)
            break;
        int i,j;
        for(i = 0 ; i < n;i++)
            for(j = 0 ; j < n; j++)
                mat[i][j] = INF;
        for(i = 0 ; i < m ;i++)
        {
            scanf("%d %d %d",&a,&b,&dis);
            --a,--b;
            if(dis < mat[a][b] || dis < mat[b][a])
            mat[a][b] = mat[b][a] = dis;
        }
        int ans = dijkstra(mat,n,0,n-1);
        printf("%d\n",ans);
    }  

}  

二叉堆实现

使用邻接矩阵实现的dijkstra算法的复杂度是O(V2)。使用邻接表的话,更新最短距离只需要访问每条边一次即可,因此这部分的复杂度是O(E).但是每次要枚举所有的顶点来查找下一个使用的顶点,因此最终复杂度还是O(V2)。在|E|比较小时,大部分的时间都花在了查找下一个使用的顶点上,因此需要使用合适的数据结构进行优化。

需要优化的是数值的插入(更新)和取出最小值两个操作,因此使用堆就可以了。把每个顶点当前的最短距离用堆来维护,在更新最短距离时,把对应的元素往根的方向移动以满足堆的性质。而每次从堆中取出的最小值就是下一次要用的顶点。这样堆中的元素共有O(V)个,更新和取出的操作O(E)次,因此整个算法的复杂度是O(ElogV)。 
下面是使用STL的priority_queue实现。在每次更新时往堆里插入当前最短距离和顶点的值对。插入的次数是O(E)次,当取出的最小值不是最短距离的话,就丢弃这个值。这样整个算法也可以在同样的时间内完成。

#include <bits/stdc++.h>  

using namespace std;
/*
 * 使用优先队列优化Dijkstra算法
 * 复杂度O(ElogE)
 * 注意对vector<Edge>E[MAXN]进行初始化后加边
 */
const int INF=0x3f3f3f3f;
const int MAXN=1000010;
struct qnode
{
    int v;
    int c;
    qnode(int _v=0,int _c=0):v(_v),c(_c){}
    bool operator <(const qnode &r)const
    {
        return c>r.c;
    }
};
struct Edge
{
    int v,cost;
    Edge(int _v=0,int _cost=0):v(_v),cost(_cost){}
};
vector<Edge>E[MAXN];
bool vis[MAXN];
int dist[MAXN];
void Dijkstra(int n,int start)//点的编号从1开始
{
    memset(vis,false,sizeof(vis));
    for(int i=1;i<=n;i++)dist[i]=INF;
    priority_queue<qnode>que;
    while(!que.empty())que.pop();
    dist[start]=0;
    que.push(qnode(start,0));
    qnode tmp;
    while(!que.empty())
    {
        tmp=que.top();
        que.pop();
        int u=tmp.v;
        if(vis[u])continue;
        vis[u]=true;
        for(int i=0;i<E[u].size();i++)
        {
            int v=E[tmp.v][i].v;
            int cost=E[u][i].cost;
            if(!vis[v]&&dist[v]>dist[u]+cost)
            {
                dist[v]=dist[u]+cost;
                que.push(qnode(v,dist[v]));
            }
        }
    }
}
void addedge(int u,int v,int w)
{
    E[u].push_back(Edge(v,w));
}
int main()
{
    int n,m;
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)E[i].clear();
        for(int i=0;i<m;i++)
        {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            addedge(u,v,w);
            //addedge(v,u,w);无向图
        }
        Dijkstra(n,1);
        //单源最短路,dist[i]为从源点start到i的最短路
    }
    return 0;
}  
时间: 2024-11-10 07:40:59

Dijkstra最短路算法的相关文章

【啊哈!算法】算法7:Dijkstra最短路算法

上周我们介绍了神奇的只有五行的Floyd最短路算法,它可以方便的求得任意两点的最短路径,这称为“多源最短路”.本周来来介绍指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”.例如求下图中的1号顶点到2.3.4.5.6号顶点的最短路径. <ignore_js_op> 与Floyd-Warshall算法一样这里仍然使用二维数组e来存储顶点之间边的关系,初始值如下. <ignore_js_op> 我们还需要用一个一维数组dis来存储1号顶点到其余各个顶点的初始路程,如下.

dijkstra 最短路算法

最朴素的做法o(n^2)#include<iostream>using namespace std;#include<vector>#include<algorithm>#include<string>#include<string.h>const int MAX = 2002;int n;int graph[MAX][MAX];int dis[MAX];bool vis[MAX];const int INF = 0X7FFFFFFF;int d

dijkstra(迪杰斯特拉)最短路算法的堆优化

dijkstra(迪杰斯特拉)最短路算法是一种时间复杂度经过严格证明的最短路算法. 优化在于每次取最小值的时候采用堆优化,但是在最短路松弛过程中,dist是不断修改的,所以,为了能使复杂度降到O(nlogn),dist修改的同时,在堆中也要修改. 注意dijkstra(迪杰斯特拉)最短路算法只能用于正权边. 1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 #include <algo

最短路算法 :Bellman-ford算法 &amp; Dijkstra算法 &amp; floyd算法 &amp; SPFA算法 详解

 本人QQ :2319411771   邮箱 : [email protected] 若您发现本文有什么错误,请联系我,我会及时改正的,谢谢您的合作! 本文为原创文章,转载请注明出处 本文链接   :http://www.cnblogs.com/Yan-C/p/3916281.html . 很早就想写一下最短路的总结了,但是一直懒,就没有写,这几天又在看最短路,岁没什么长进,但还是加深了点理解. 于是就想写一个大点的总结,要写一个全的. 在本文中因为邻接表在比赛中不如前向星好写,而且前向星效率并

[ACM] 最短路算法整理(bellman_ford , SPFA , floyed , dijkstra 思想,步骤及模板)

以杭电2544题目为例 最短路 Problem Description 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗? Input 输入包括多组数据.每组数据第一行是两个整数N.M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路.N=M=0

最短路算法(dijkstra,bellman_ford,floyd)

最短路算法 dijkstra(初级的最短路算法,适合稠密图,可用邻接表优化) bool relax(int u,int v) { double tmp=max(dist[u],edge[u][v]); if(tmp<dist[v]){ dist[v]=tmp; } } void dijkstra() { memset(vis,0,sizeof(vis)); for(int i=0;i<n;i++){ int x; double mindist=INF; for(int j=0;j<n;j

最短路算法(floyed+Dijkstra+bellman-ford+SPFA)

最短路算法简单模板 一.floyed算法 首先对于floyed算法来说就是最短路径的动态规划解法,时间复杂度为O(n^3) 适用于图中所有点与点之间的最短路径的算法,一般适用于点n较小的情况. Floyed算法有三层循环,循环的层次先后顺序也是比较重要的,分别为k ,i,j:因为dis[k][i][j]代表的是i节点到j节点的最短路如果中间经过节点k的话dis[k][i][j] =dis[k-1][i][k]+dis[k-1][k][j]:否则dis[k][i][j] = dis[k-1][i]

最短路算法汇总

校赛完了,这次校赛,做的很差,一个算法题没有,2个水题,1个贪心,概率DP,DP,数论题.DP还没开始研究,数论根本不会,数学太差了,省赛时卡数论,校赛依然卡数论,我擦,还是得继续学习啊! 一把锈迹斑斑的剑,只有不断的磨砺,才能展露锋芒! 以下为最短路总结: 最短路问题可分为: 一.单源最短路径算法,解决方案:Bellman-Ford算法,Dijkstra算法,SPFA 二.每对顶点间的最短路径算法:Floyd: (1).Dijkstra算法: (经典的算法,可以说是最短路问题的首选事例算法,但

最短路算法及其延伸

个人算法训练题集:http://acm.hust.edu.cn/vjudge/contest/toListContest.action#contestType=0&contestRunningStatus=0&contestOpenness=0&title=风斩冰华&manager= 密码xwd,欢迎大家一起来学习. 首先复习一下最短路问题,即求某两点之间边权最小的一条路径.这样就延伸出了两个子问题: 求任意两点的距离,还是求图上固定一个起点到某点的距离? 验题:http: