POJ 3020-Antenna Placement(二分图匹配_最小路径覆盖+前向星构图)

Antenna Placement

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 6930   Accepted: 3439

Description

The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and
comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating
in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them.

Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest,
which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r),
or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered?

Input

On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing
the points of interest in Sweden in the form of h lines, each containing w characters from the set [‘*‘,‘o‘]. A ‘*‘-character symbolises a point of interest, whereas a ‘o‘-character represents open space.

Output

For each scenario, output the minimum number of antennas necessary to cover all ‘*‘-entries in the scenario‘s matrix, on a row of its own.

Sample Input

2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*

Sample Output

17
5

题意:在一个h*w的矩阵中,*代表城市,o表示空地,城市需要覆盖无线网,若放置一个基站,可以覆盖相邻的两个城市,问最少要放置多少个基站才能将所有的城市覆盖。

思路:这道题目难点不是二分图的问题,却是建图的问题。到底是有向图还是无向图,因为这两个的建图方式是不同的,这道题是个有向图,这里不是把城市的x,y坐标当做点集,而是将一个一个的城市当做点集,构造方法如下(转)

例如输入:

*oo

***

O*o

时,可以抽象为一个数字地图:

100

234

050

数字就是根据输入的城市次序作为该城市的编号,0代表该位置没有城市。

然后根据题目的“范围”规则,从第一个城市开始,以自身作为中心城市,向四个方向的城市进行连线(覆盖)

因此就能够得到边集:

e12  e21     e32     e43    e53

e23     e34

e35

可以看到,这些边都是有向边,但是每一条边都有与其对应的一条相反边。

即任意两个城市(顶点)之间的边是成对出现的

那么我们就可以确定下来,应该 构造无向二分图(其实无向=双向)

把原有向图G的每一个顶点都”拆分(我认为复制更准确)”为2个点,分别属于所要构造的二分图的两个顶点集

那么同理就可以得到刚才的例子的 无向二分图为:

再继而通过无向二分图,以V1的元素作为row,V2的元素作为col,构造 可达矩阵 存储到计算机

1’  2’  3’  4’  5’

1  F  T   F   F   F

2  T  F   T   F   F

3  F  T   F   T   T

4  F  F   T   F   F

5  F  F   T   F   F

接下来就是要求这个 无向二分图的最小路径覆盖 了

利用公式:

无向二分图的最小路径覆盖 = 顶点数 – 最大二分匹配数/2。

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
using namespace std;
struct node {
    int v,w;
    int next;
} edge[10010];
int cnt,k;
int head[500];
int vis[500];
int link[500];
int map[100][100];
int jx[]= {-1,0,1,0};
int jy[]= {0,1,0,-1};
void add(int u,int v,int w) {
    edge[cnt].v=v;
    edge[cnt].w=w;
    edge[cnt].next=head[u];
    head[u]=cnt++;
}
int dfs(int u) {
    int i;
    for(i=head[u]; i!=-1; i=edge[i].next) {
        int v=edge[i].v;
        if(!vis[v]) {
            vis[v]=1;
            if(link[v]==-1||dfs(link[v])) {
                link[v]=u;
                return 1;
            }
        }
    }
    return 0;
}
int main() {
    int T,i,j,l;
    int h,w;
    char str;
    scanf("%d",&T);
    while(T--) {
        memset(head,-1,sizeof(head));
        memset(link,-1,sizeof(link));
        memset(map,0,sizeof(map));
        k=0;
        cnt=0;
        scanf("%d %d",&h,&w);
        for(i=1; i<=h; i++) {
            for(j=1; j<=w; j++) {
                    cin>>str;
                if(str=='*')
                    map[i][j]=++k;
            }
        }
        for(i=1; i<=h; i++) {
            for(j=1; j<=w; j++) {
                if(map[i][j]) {
                    for(l=0; l<4; l++) {
                        if(map[i+jx[l]][j+jy[l]])
                            {
                                add(map[i][j],map[i+jx[l]][j+jy[l]],1);
                                add(map[i+jx[l]][j+jy[l]],map[i][j],1);
                            }
                    }
                }
            }
        }
        int sum=0;
        for(i=1;i<=k;i++) {
            memset(vis,0,sizeof(vis));
            sum+=dfs(i);
        }
        printf("%d\n",k-sum/2);//无向二分图:最小路径覆盖数 = "拆点"前原图的顶点数 - 最大匹配数/2
    }
}
时间: 2024-12-24 05:58:50

POJ 3020-Antenna Placement(二分图匹配_最小路径覆盖+前向星构图)的相关文章

POJ 3020 Antenna Placement(二分图建图训练 + 最小路径覆盖)

题目链接:http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6692   Accepted: 3325 Description The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobi

POJ - 3020 Antenna Placement 二分图 最小路径覆盖

题目大意:有n个城市,要在这n个城市上建立无线电站,每个无线电站只能覆盖2个相邻的城市,问至少需要建多少个无线电站 解题思路:英语题目好坑,看了半天.. 这题和POJ - 2446 Chessboard类似 可以将所有城市分成两个点集,那么之间的连线就代表无线电站的覆盖关系了. 因为所有城市都要覆盖到,所以根据关系,求出最小路径覆盖就能覆盖所有城市了 #include<cstdio> #include<algorithm> #include<cstring> #incl

POJ 3020 Antenna Placement(二分图 匈牙利算法)

题目网址:  http://poj.org/problem?id=3020 题意: 用椭圆形去覆盖给出所有环(即图上的小圆点),有两种类型的椭圆形,左右朝向和上下朝向的,一个椭圆形最多可以覆盖相邻的两个小圆点.   思路: 将每个小圆点看作是一个顶点,因为一个椭圆只能覆盖两个小圆点,我们就可以把这个图看成一个二分图.将相邻的两个点,一个看作是X集合内顶点,另一个看成是Y集合内顶点.但要注意的是一个顶点可能不止和一个顶点想连(如上图情况),所以我们要把上述情况看作是一个无向图,而不是有向图.无向图

POJ - 3020 ? Antenna Placement 二分图最大匹配

http://poj.org/problem?id=3020 首先注意到,答案的最大值是'*'的个数,也就是相当于我每用一次那个技能,我只套一个'*',是等价的. 所以,每结合一对**,则可以减少一次使用,所以就是找**的最大匹配数目. 对于每一个*,和它的上下左右连接一条边(如果是*才连) 那么,这个图是一个二分图,怎么找到左边集合S,右边集合T呢? 我的做法是染色一次,就可以. 这题应该不能贪心吧. 3 5 ***** o***o o*o*o 其实也可以不分开S.T 跑一发最大匹配,然后匹配

POJ 3020 Antenna Placement ,二分图的最小路径覆盖

题目大意: 一个矩形中,有N个城市'*',现在这n个城市都要覆盖无线,若放置一个基站,那么它至多可以覆盖相邻的两个城市. 问至少放置多少个基站才能使得所有的城市都覆盖无线? 无向二分图的最小路径覆盖 = 顶点数 –  最大二分匹配数/2 路径覆盖就是在图中找一些路径,使之覆盖了图中的所有顶点,且任何一个顶点有且只有一条路径与之关联: #include<cstdio> #include<cstring> #include<vector> #include<algor

POJ 3020 Antenna Placement(二分图匹配)

POJ 3020 Antenna Placement 题目链接 题意:给定一个地图,'*'的地方要被覆盖上,每次可以用1 x 2的矩形去覆盖,问最少用几个能覆盖 思路:二分图匹配求最大独立集,相邻*之间连边,然后求最大独立集即可 看这数据范围,用轮廓线dp应该也能搞 代码: #include <cstdio> #include <cstring> #include <vector> #include <algorithm> using namespace s

二分图匹配(匈牙利算法) POJ 3020 Antenna Placement

题目传送门 1 /* 2 题意:*的点占据后能顺带占据四个方向的一个*,问最少要占据多少个 3 匈牙利算法:按坐标奇偶性把*分为两个集合,那么除了匹配的其中一方是顺带占据外,其他都要占据 4 */ 5 #include <cstdio> 6 #include <algorithm> 7 #include <cstring> 8 #include <vector> 9 using namespace std; 10 11 const int MAXN = 4e

poj 3020 Antenna Placement 解题报告

题目链接:http://poj.org/problem?id=3020 题目意思:首先,请忽略那幅有可能误导他人成分的截图(可能我悟性差,反正有一点点误导我了). 给出一幅 h * w 的图,  “ * ” 表示 point of interest,“ o ” 忽略之.你可以对 " * " (假设这个 “* ”的坐标是 (i, j))画圈,每个圈只能把它四周的某一个点括住(或者是上面(i-1, j) or 下面(i+1, j) or 左边(i, j-1)  or 右边(i, j+1))

POJ - 3020 Antenna Placement(最小覆盖路径)

---恢复内容开始--- https://vjudge.net/problem/POJ-3020 题意 *--代表城市,o--代表空地 给城市安装无线网,一个无线网最多可以覆盖两座城市,问覆盖所有城市最少要用多少无线. 分析 第一眼看没什么感觉,但要是想到需要处理的点是城市,那这个问题就是一个最小路径覆盖问题了.因为最多覆盖两个城市,即相邻城市才匹配.最小路径覆盖=总节点数-最大匹配数.建图时是双向的,所以最大匹配数/2. #include<iostream> #include<cstr