求斐波那契数列的相邻两项的比值,精确到小数后三位。

未完成,只能假设知道是9和10代入。

代码如下:

package zuoye;

import java.math.BigDecimal;

/*
 * 求斐波那契数列的相邻两项的比值,精确到小数后三位。
 * p1,p2,p3......pi,pj,...求pi/pj
 * 1 1 2 3 5 8 13
 * 5/8,8/13,...收敛
 */

public class Test {
    static double feibo(int x){
        if(x==1||x==2) return 1;
        return feibo(x-1)+feibo(x-2);
    }
    public static void main(String[] args) {

        double ret = round(feibo(8)/feibo(9),3,BigDecimal.ROUND_HALF_UP);

        System.out.println(ret);

    }
     public static double round(double value, int scale, int roundingMode) {
            BigDecimal bd = new BigDecimal(value);
            bd = bd.setScale(scale, roundingMode);
            double d = bd.doubleValue();
            bd = null;
            return d;
        }
}

运行结果:

时间: 2024-12-27 23:43:56

求斐波那契数列的相邻两项的比值,精确到小数后三位。的相关文章

poj 3070 Fibonacci (矩阵快速幂求斐波那契数列的第n项)

题意就是用矩阵乘法来求斐波那契数列的第n项的后四位数.如果后四位全为0,则输出0,否则 输出后四位去掉前导0,也...就...是...说...输出Fn%10000. 题目说的如此清楚..我居然还在%和/来找后四位还判断是不是全为0还输出时判断是否为0然后 去掉前导0.o(╯□╰)o 还有矩阵快速幂的幂是0时要特判. P.S:今天下午就想好今天学一下矩阵乘法方面的知识,这题是我的第一道正式接触矩阵乘法的题,欧耶! #include<cstdio> #include<iostream>

c语言:写一个函数,输入n,求斐波拉契数列的第n项(5种方法,层层优化)

写一个函数,输入n,求斐波拉契数列的第n项. 斐波拉契数列:1,1,2,3,5,8...,当n大于等于3时,后一项为前面两项之和. 解:方法1:从斐波拉契数列的函数定义角度编程 #include<stdio.h> int fibonacci(int n) { int num1=1, num2=1, num3=0,i; if (n <= 2) { printf("斐波拉契数列的第%d项为:%d\n",n,num1); } else { for (i = 2; i <

求斐波那契数列的第n项值——9

写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 0            n = 0 F(n) =  1            n = 1 F(n-1)+F(n-2)    n > 1 也就是斐波那契数列为{0,1,1,2,3,5,8,13,21,......F(n-1)+F(n-2)}: 首先可以想到,因为要求第n个斐波那契数,就需要知道第n-1和第n-2个斐波那契数,而求第n-1个斐波那契数就需要知道第n-2个和第n-3个斐波那契数,第n-2个斐波

[发布] 矩阵乘法及其对于编程求斐波那契数列的某一项的应用

需要PDF的读者可以向我索要. 如果发现有翻印与用于商业用途,将予追究. ======================================= 编者注:本文中如果没有特殊说明,除法均只取整数部分,忽略小数部分. 感谢大家对我的支持!同时感谢ysy大聚聚.

黑马入学基础测试(三)求斐波那契数列第n项,n&lt;30,斐波那契数列前10项为 1,1,2,3,5,8,13,21,34,55

.获得用户的输入 计算      3打印就行了.   这里用到了java.util.Scanner   具体API  我就觉得不常用.解决问题就ok了.注意的是:他们按照流体的方式读取.而不是刻意反复读取 自己写的代码: package com.itheima; import java.util.Scanner; public class Test3 { /** * 3.求斐波那契数列第n项,n<30,斐波那契数列前10项为 1,1,2,3,5,8,13,21,34,55 * * @author

01-封装函数求斐波那契数列第n项

<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8"> <title></title> </head> <body> <script> //需求:封装一个函数,求斐波那契数列的第n项 alert(getValue()); //定义一个函数 function getValue(n){ //回顾

利用矩阵求斐波那契数列

利用矩阵求斐波那契数列 flyfish 2015-8-27 矩阵(matrix)定义 一个m*n的矩阵是一个由m行n列元素排成的矩形阵列.矩阵里的元素可以是数字符号或者数学式. 形如 {acbd} 的数表称为二阶矩阵,它由二行二列组成,其中a,b,c,d称为这个矩阵的元素. 形如 {x1x2} 的有序对称为列向量Column vector 设 A={acbd} X={x1x2} 则 Y={ax1+bx2cx1+dx2} 称为二阶矩阵A与平面向量X的乘积,记为AX=Y 斐波那契(Fibonacci

快速求斐波那契数列(矩阵乘法+快速幂)

斐波那契数列 给你一个n:f(n)=f(n-1)+f(n-2) 请求出 f(f(n)),由于结果很大请 对答案 mod 10^9+7; 1<=n<=10^100; 用矩阵乘法+快速幂求斐波那契数列是经典应用: 矩阵公式 C i j=C i k *C k j; 根据递推式 构造2*2矩阵: 原始矩阵 1 0 0 1 矩阵 2 1 1 1 0 原始矩阵与矩阵 2相乘达到转化状态效果: 对矩阵二进行快速幂 乘法:达到快速转化矩阵的效果: 即使达到快速转化状态:那么大的数据范围也很难求解: 高精?这有

求斐波那契数列的第n个数(递归、非递归)

用递归的方式求斐波那契数列的第n个数. 用非递归的方式求斐波那契数列的第n个数. 定义: 斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368 特别指出:第0项是0,第1项是第一个1. 这个数列从第2项开始,每一项都等于前两项之和. #include<stdio.h> #include<stdlib.