[转]Theano下用CNN(卷积神经网络)做车牌中文字符OCR

Theano下用CNN(卷积神经网络)做车牌中文字符OCR

原文地址:http://m.blog.csdn.net/article/details?id=50989742

之前时间一直在看 Michael Nielsen 先生的 Deep Learning 教程

用了他的代码在theano下测试了下中文车牌字符的识别。由于我没有GPU,简单的在进行了16个epoch之后,识别率达到了 98.41% ,由于图像本来质量就不高,达到这个识别率,效果挺不错了。

一共 31 类 车牌中文字符数据来源于中文车牌识别项目 EasyPR 的数据集 . 由于数据集分布很不均匀。可能会导致个别类别拟合不一致,而降低识别率。所以使用随机轻微扭曲图像的方式来生成新的数据以保证数据集各个类目的数量的均衡。

下面是用于轻微扭曲图像来生成更多样本的函数。

def rotRandrom(img,factor,size):
    """ 使图像轻微的畸变

        img 输入图像
        factor 畸变的参数
        size 为图片的目标尺寸

    """
    img = img.reshape(size);
    shape = size;

    pts1 = np.float32([[0,0],[0,shape[0]],[shape[1],0],[shape[1],shape[0]]])
    pts2 = np.float32([[r(factor),r(factor)],[0,shape[0]-r(factor)],[shape[1]-r(factor),0],[shape[1]-r(factor),shape[0]-r(factor)]])
    M  = cv2.getPerspectiveTransform(pts1,pts2);
    dst = cv2.warpPerspective(img,M,(shape[0],shape[1]));
    return dst.ravel();

在训练的时候 使用的CNN结构如下

激活函数都为 ReLu

Conv(kernel size 5*5 ) * 25个 feature map->

Pooling 2*2  ->

Conv(kernel size 5*5) * 16个feature map->

Pooling 2*2 ->

FullConnectedLayer 120 个 Neurons ->

FullConnectedLayer 84个 Neurons ->

Softmax Output 31类

import network3
from network3 import Network
from network3 import ConvPoolLayer, FullyConnectedLayer, SoftmaxLayer
from network3 import ReLU

training_data, validation_data, test_data= network3.load_data_cPickle("./data.pkl")
mini_batch_size = 10
net = Network([
        ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
                      filter_shape=(25, 1, 5, 5),
                      poolsize=(2, 2),
                      activation_fn=ReLU),
        ConvPoolLayer(image_shape=(mini_batch_size, 25, 12, 12),
                      filter_shape=(16, 25, 5, 5),
                      poolsize=(2, 2),
                      activation_fn=ReLU),
        FullyConnectedLayer(n_in=16*4*4, n_out=120, activation_fn=ReLU),
         FullyConnectedLayer(n_in=120, n_out=84, activation_fn=ReLU),
        SoftmaxLayer(n_in=84, n_out=31)], mini_batch_size )
net.SGD(training_data, 60, mini_batch_size, 0.03, validation_data, test_data, lmbda=0.1)

这个函数用于制作自己的数据。

def make_dataset(dirn):
    set = [];
    labels = [] ;

    def findinside(dirname,code,):
        print "code",code;
        print "dirname",dirname;

        for parent,dirnames,filenames in os.walk(dirname):
            adder = 1400 -  len(filenames)
            len_d = len(filenames)
            for filename in filenames:
                path  =parent+"/"+filename
                if(path.endswith(".jpg")):
                            img = cv2.imread(path,cv2.CV_LOAD_IMAGE_GRAYSCALE);
                            img = cv2.resize(img,(28,28));
                            img = img.astype(np.float32)/255;

                            set.append(img.ravel());
                            labels.append(code);
            for i in range(adder):
                c_index = int(np.random.rand() * len_d);
                l_set = len(set)
                set.append(rotrandom.rotRandrom( set[l_set-len_d + c_index],0.88,(28,28)));

                labels.append(code);

        print len(set),dirname,len(filenames)

    for parent,dirnames,filenames in os.walk(dirn):
            num = len(dirnames);
            for i in range(num):
                        c_path = dir_chars + "/"+ dirnames[i];
                        findinside(c_path,i);

    shuffle = np.random.permutation(len(set));

    print len(set)
    set = np.array(set);
    labels = np.array(labels);
    set, labels = set[shuffle], labels[shuffle]
    train_n = int(0.9*len(set))

    training_set,test_set = np.split(set, [train_n])
    training_labels, test_labels = np.split(labels, [train_n])
    print training_labels
    validation_set = test_set.copy();
    validation_labels = test_set.copy();
    training_data = [training_set,training_labels]
    validation_data = [validation_set,validation_labels]

    test_data = [test_set,test_labels]

    data = [ training_data, validation_data, test_data];
    fileid  = open("./data.pkl","wb")
    cPickle.dump(data,fileid)

dir_chars = "./charsChinese"
make_dataset(dir_chars);

在进行了第14个epoch之后获得了 98.41% 训练时间大概在10分钟左右。

Training mini-batch number 0
Training mini-batch number 1000
Training mini-batch number 2000
Training mini-batch number 3000
Epoch 0: validation accuracy 89.15%
This is the best validation accuracy to date.
The corresponding test accuracy is 89.15%
Training mini-batch number 4000
Training mini-batch number 5000
Training mini-batch number 6000
Training mini-batch number 7000
Epoch 1: validation accuracy 94.65%
This is the best validation accuracy to date.
The corresponding test accuracy is 94.65%
Training mini-batch number 8000
Training mini-batch number 9000
Training mini-batch number 10000
Training mini-batch number 11000
Epoch 2: validation accuracy 95.44%
This is the best validation accuracy to date.
The corresponding test accuracy is 95.44%
Training mini-batch number 12000
Training mini-batch number 13000
Training mini-batch number 14000
Training mini-batch number 15000
Epoch 3: validation accuracy 96.13%
This is the best validation accuracy to date.
The corresponding test accuracy is 96.13%
Training mini-batch number 16000
Training mini-batch number 17000
Training mini-batch number 18000
Training mini-batch number 19000
Epoch 4: validation accuracy 96.91%
This is the best validation accuracy to date.
The corresponding test accuracy is 96.91%
Training mini-batch number 20000
Training mini-batch number 21000
Training mini-batch number 22000
Training mini-batch number 23000
Epoch 5: validation accuracy 96.52%
Training mini-batch number 24000
Training mini-batch number 25000
Training mini-batch number 26000
Training mini-batch number 27000
Epoch 6: validation accuracy 96.87%
Training mini-batch number 28000
Training mini-batch number 29000
Training mini-batch number 30000
Training mini-batch number 31000
Epoch 7: validation accuracy 96.87%
Training mini-batch number 32000
Training mini-batch number 33000
Training mini-batch number 34000
Training mini-batch number 35000
Epoch 8: validation accuracy 97.58%
This is the best validation accuracy to date.
The corresponding test accuracy is 97.58%
Training mini-batch number 36000
Training mini-batch number 37000
Training mini-batch number 38000
Training mini-batch number 39000
Epoch 9: validation accuracy 97.49%
Training mini-batch number 40000
Training mini-batch number 41000
Training mini-batch number 42000
Epoch 10: validation accuracy 97.60%
This is the best validation accuracy to date.
The corresponding test accuracy is 97.60%
Training mini-batch number 43000
Training mini-batch number 44000
Training mini-batch number 45000
Training mini-batch number 46000
Epoch 11: validation accuracy 97.93%
This is the best validation accuracy to date.
The corresponding test accuracy is 97.93%
Training mini-batch number 47000
Training mini-batch number 48000
Training mini-batch number 49000
Training mini-batch number 50000
Epoch 12: validation accuracy 97.83%
Training mini-batch number 51000
Training mini-batch number 52000
Training mini-batch number 53000
Training mini-batch number 54000
Epoch 13: validation accuracy 98.04%
This is the best validation accuracy to date.
The corresponding test accuracy is 98.04%
Training mini-batch number 55000
Training mini-batch number 56000
Training mini-batch number 57000
Training mini-batch number 58000
Epoch 14: validation accuracy 98.20%
This is the best validation accuracy to date.
The corresponding test accuracy is 98.20%
Training mini-batch number 59000
Training mini-batch number 60000
Training mini-batch number 61000
Training mini-batch number 62000
Epoch 15: validation accuracy 97.86%
Training mini-batch number 63000
Training mini-batch number 64000
Training mini-batch number 65000
Training mini-batch number 66000
Epoch 16: validation accuracy 98.41%
This is the best validation accuracy to date.
The corresponding test accuracy is 98.41%
时间: 2024-08-25 11:13:00

[转]Theano下用CNN(卷积神经网络)做车牌中文字符OCR的相关文章

Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learn

【转】Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现

原作者:zouxy09 原文链接:http://blog.csdn.net/zouxy09/article/details/9993371 Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 [email protected] http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己

DeepLearning tutorial(4)CNN卷积神经网络原理简介+代码详解

DeepLearning tutorial(4)CNN卷积神经网络原理简介+代码详解 @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/43225445 本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Convolutional Neural Networks (LeNet).经详细注释的代码和原始代码:放在我的github地址上,可下载. 一.CNN卷积神经网络原理

Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 [email protected] http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感觉看完过后就会慢慢的淡忘,某一天重新拾起来的时候又好像没有看过一样.所以想习惯地把一些感觉有用的论文中的知识点总结整理一下,一方面在整理过程中,自己的理解也会更深,另一方面也方便未来自己的勘察.更好的还可以放到博客上面与大家交流.因为基础有限,所以对论文的一些理解可能不太正确,还望大家不

CNN卷积神经网络学习笔记3:权值更新公式推导

在上篇<CNN卷积神经网络学习笔记2:网络结构>中,已经介绍了CNN的网络结构的详细构成,我们已经可以初始化一个自己的CNN网络了,接下来就是要用训练得到一个确定的CNN的模型,也就是确定CNN的参数. CNN本质上就是人工神经网络的一种,只是在前几层的处理上有所不同,我们可以把卷积核看成是人工神经网络里的权值W,而采样层实质上也是一种卷积运算.所以可以基于人工神经网络的权值更新的方法来推导CNN里的权值更新公式.人工神经网络里是用反向传播算法将误差层层回传,利用梯度下降法更新每一层的权值,C

CNN卷积神经网络学习笔记2:网络结构

在上篇笔记<CNN卷积神经网络学习笔记1:背景介绍>中已经介绍过CNN的结构,这篇笔记中,通过一个简单的CNN的例子,梳理一下CNN的网络结构的细节. 以下是一个6层的CNN网络,这个简单的CNN网络是DeepLearning Toolbox里面CNN的一个例子,后面要通过DeepLearning Toolbox中CNN的代码来进一步理解CNN的整个过程.我们输入的是1张大小为28*28的图片. 需要注意的有: 1,这里输入的是一张图片,如果我们输入了50张图片,那么下图中的每一个方框(代表一

CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)

CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别? DNN以神经网络为载体,重在深度,可以说是一个统称.RNN,回归型网络,用于序列数据,并且有了一定的记忆效应,辅之以lstm.CNN应该侧重空间映射,图像数据尤为贴合此场景. DNN以神经网络为载体,重在深度,可以说是一个统称.RNN,回归型网络,用于序列数据,并且有了一定的记忆效应,辅之以lstm.CNN应该侧重空间映射,图像数据尤为贴合此场景. Stanford University CS231

CNN卷积神经网络

CNN是一种多层神经网络,基于人工神经网络,在人工神经网络前,用滤波器进行特征抽取,使用卷积核作为特征抽取器,自动训练特征抽取器,就是说卷积核以及阈值参数这些都需要由网络去学习. 图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程. 一般卷积神经网络的结构: 前面feature extraction部分体现了CNN的特点,feature extraction部分最后的输出可以作为分类器的输入.这个分类器你可以用softmax或RBF等等. 局部感受野与权值共享 局部感受

CNN卷积神经网络新想法

最近一直在看卷积神经网络,想改进改进弄出点新东西来,看了好多论文,写了一篇综述,对深度学习中卷积神经网络有了一些新认识,和大家分享下. 其实卷积神经网络并不是一项新兴的算法,早在上世纪八十年代就已经被提出来,但当时硬件运算能力有限,所以当时只用来识别支票上的手写体数字,并且应用于实际.2006年深度学习的泰斗在<科学>上发表一篇文章,论证了深度结构在特征提取问题上的潜在实力,从而掀起了深度结构研究的浪潮,卷积神经网络作为一种已经存在的.有一定应用经验的深度结构,重新回到人们视线,此时硬件的运算