洛谷P3200 [HNOI2009]有趣的数列(Catalan数)

P3200 [HNOI2009]有趣的数列

题目描述

我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件:

(1)它是从1到2n共2n个整数的一个排列{ai};

(2)所有的奇数项满足a1<a3<...<a2n-1,所有的偶数项满足a2<a4<...<a2n;

(3)任意相邻的两项a2i-1与a2i(1<=i<=n)满足奇数项小于偶数项,即:a2i-1<a2i。

现在的任务是:对于给定的n,请求出有多少个不同的长度为2n的有趣的数列。因为最后的答案可能很大,所以只要求输出答案 mod P的值。

输入输出格式

输入格式:

输入文件只包含用空格隔开的两个整数n和P。输入数据保证,50%的数据满足n<=1000,100%的数据满足n<=1000000且P<=1000000000。

输出格式:

仅含一个整数,表示不同的长度为2n的有趣的数列个数mod P的值。

输入输出样例

输入样例#1:

3 10

输出样例#1:

5

对应的5个有趣的数列分别为(1,2,3,4,5,6),(1,2,3,5,4,6),(1,3,2,4,5,6),(1,3,2,5,4,6),(1,4,2,5,3,6)。

/*
    裸的卡特兰数。。。。
    公式:C(n,2*n)/(n+1)%p
    C(n,2*n)表示在2*n个数中选n个,就是组合数啦。。。
    公式可以展开:((2*n)!/n!*(n+1)!)%p
    于是出现唯一的难点:取模
    题目中没说p是不是质数。。。
    因为(2*n)!一定能被n!*(n+1)!)整除
    所以对于每一个小于2*n的质因数p来说,(2*n)!中一定存在数量更多的(或一样多)的因数p
    于是可以分解质因数。。。
    这是线性的,可以预处理。。。
    于是此题解决。。。
*/
#include<iostream>
#include<cstdio>
#define LL long long
using namespace std;
LL n,p;
int a[3000005],pri[3000005],cnt=0;
LL pow(LL a,LL b){
    LL s=1;
    while(b){
        if(b&1) s=s*a%p;
        b>>=1;
        a=a*a%p;
    }
    return s;
}
int main(){
    LL ans=1;
    LL m,s=0;
    scanf("%lld%lld",&n,&p);
    for(int i=2;i<=n*2;i++){//欧拉筛
        if(a[i]==0)
            pri[++cnt]=i;
        for(int j=1;j<=cnt&&pri[j]*i<=n*2;j++){
            a[pri[j]*i]=1;
            if(i%pri[j]==0) break;
        }
    }
    for(int i=1;i<=cnt;i++){
        s=0;
        m=2*n;
        while(m>0){
            m=m/pri[i];
            s=s+m;
        }
        m=n;
        while(m>0){
            m=m/pri[i];
            s=s-m;
        }
        m=n+1;
        while(m>0){
            m=m/pri[i];
            s=s-m;
        }
        ans=ans*pow(pri[i],s)%p;
    }
    printf("%lld\n",ans);
    return 0;
}
时间: 2024-10-10 15:06:45

洛谷P3200 [HNOI2009]有趣的数列(Catalan数)的相关文章

BZOJ 1485: [HNOI2009]有趣的数列( catalan数 )

打个表找一下规律可以发现...就是卡特兰数...卡特兰数可以用组合数计算.对于这道题,ans(n) = C(n, 2n) / (n+1) , 分解质因数去算就可以了... ---------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm> using namespa

BZOJ 1485: [HNOI2009]有趣的数列 [Catlan数 质因子分解]

1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…<a2n-1,所有的偶数项满足a2<a4<…<a2n: (3)任意相邻的两项a2i-1与a2i(1≤i≤n)满足奇数项小于偶数项,即:a2i-1<a2i. 现在的任务是:对于给定的n,请求出有多少个不同的长度为2n的有趣的数列.因为最后的答

bzoj1485 [HNOI2009]有趣的数列 卡特兰数

[bzoj1485][HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…<a2n-1,所有的偶数项满足a2<a4<…<a2n: (3)任意相邻的两项a2i-1与a2i(1≤i≤n)满足奇数项小于偶数项,即:a2i-1<a2i. 现在的任务是:对于给定的n,请求出有多少个不同的长度为2n的有趣的数列.因为

洛谷P2532 [AHOI2012]树屋阶梯(Catalan数)

P2532 [AHOI2012]树屋阶梯 题目描述 输入输出格式 输入格式: 一个正整数N(1<=N<=500),表示阶梯的高度. 输出格式: 一个正整数,表示搭建方法的个数.(注:搭建方法的个数可能很大) 输入输出样例 输入样例#1: 3 输出样例#1: 5 说明 40%的数据:1<=N<=20 80%的数据:1<=N<=300 100%的数据:1<=N<=500 /* Catalan数套个高精 */ #include<iostream> #i

[HNOI2009]有趣的数列 题解(卡特兰数)

[HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<...<a2n-1,所有的偶数项满足a2<a4<...<a2n: (3)任意相邻的两项a2i-1与a2i(1<=i<=n)满足奇数项小于偶数项,即:a2i-1<a2i. 现在的任务是:对于给定的n,请求出有多少个不同的长度为2n的有趣的数列.

「BZOJ1485」[HNOI2009] 有趣的数列 卡特兰数列

「BZOJ1485」[HNOI2009] 有趣的数列   Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<-<a2n-1,所有的偶数项满足a2<a4<-<a2n: (3)任意相邻的两项a2i-1与a2i(1≤i≤n)满足奇数项小于偶数项,即:a2i-1<a2i. 现在的任务是:对于给定的n,请求出有多少个不同的长度为2n的有趣的数列

[HNOI2009]有趣的数列

题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<...<a2n-1,所有的偶数项满足a2<a4<...<a2n: (3)任意相邻的两项a2i-1与a2i(1<=i<=n)满足奇数项小于偶数项,即:a2i-1<a2i. 现在的任务是:对于给定的n,请求出有多少个不同的长度为2n的有趣的数列.因为最后的答案可能很大,所以只要求输出答案 m

【卡特兰数】BZOJ1485: [HNOI2009]有趣的数列

Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…<a2n-1,所有的偶数项满足a2<a4<…<a2n: (3)任意相邻的两项a2i-1与a2i(1≤i≤n)满足奇数项小于偶数项,即:a2i-1<a2i. 现在的任务是:对于给定的n,请求出有多少个不同的长度为2n的有趣的数列.因为最后的答案可能很大,所以只要求输出答案 mod P的

【BZOJ】[HNOI2009]有趣的数列

[算法]Catalan数 [题解] 学了卡特兰数就会啦>_<! 因为奇偶各自递增,所以确定了奇偶各自的数字后排列唯一. 那么就是给2n个数分奇偶了,是不是有点像入栈出栈序呢. 将做偶数标为-1,做奇数标为+1,显然当偶数多于奇数时不合法,因为它压不住后面的奇数. 然后其实这种题目,打表就可知啦--QAQ 然后问题就是求1/(n+1)*C(2n,n)%p了,p不一定是素数. 参考bzoj礼物的解法. 看到网上清一色的素数筛+分解质因数解法,不解了好久,感觉写了假的礼物-- 后来觉得礼物的做法才比