题目大意:给定一个P,S是以P为循环的无限串,定义G(i,j),现在有两种操作:
- 1 x d;将P中x的位置变为d
- 2 l r:查询S中l-r之间所有的G(i, j)的和
解题思路:线段树的区间查询点修改。
根据G(i,j)的公式可以推导出:每次查询l~r这段区间的答案为:
- 奇数:sl?len+sl+2?(len?2)+sl+4?(len?4)+?+sr?1
- 偶数:sl?len+sl+2?(len?2)+sl+4?(len?4)+?+sr?1?2
于是对2倍的P建立线段树(统一奇偶操作),因为对两倍的P建树,所以修改的时候要修改两个位置。
每个节点维护4个值:
- sum[0];区间内与l奇偶相同的位置上数的总和
- sum[1]:区间内与l奇偶不同的位置上数的总和
- ans[0]:查询区间l~r时的答案
- ans[1]:查询区间l+1~r时的答案(这里的r是相对的,根据l的奇偶性)
区间合并时,根据左孩子的长度来决定合并操作,合并时需要考虑因为长度增加导致左孩子答案计算中的系数变化,需要乘上右孩子的区间长度,提取公因子后其实就是事先维护的sum。
查询时,根据查询的区间大小,如果小于2P,直接插叙即可。大于2P的时候,即要将整段差分成pre,mid,suf三段处理,然后用区间合并的方式合并,注意mid是n倍的2P,在P长度比较短的情况下,n会很大,所以不能遍历计算,要推成等差数列求和,并且注意乘法爆long long。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define lson(x) ((x)<<1)
#define rson(x) (((x)<<1)+1)
typedef long long ll;
const int maxn = 200005;
const ll mod = 1e9+7;
struct Node {
int l, r;
ll sum[2], ans[2];
}nd[maxn*4];
int N, M;
char str[maxn];
void pushup(int u);
Node query(int u, int x, int y);
void modify (int u, int x, int v);
void build_segTree(int u, int l, int r);
inline ll cal(ll n) {
if (n&1)
return ((n-1) / 2 % mod) * (n % mod) % mod;
else
return (n / 2 % mod) * ((n-1) % mod) % mod;
}
void init () {
scanf("%s", str);
N = strlen(str);
M = 2 * N;
build_segTree(1, 1, M);
}
int solve (ll x, ll y) {
ll p = (x-1) / M, q = (y-1) / M;
if (p != q) {
int d = (x % 2) ^ 1;
ll n = (q - p - 1) % mod;
Node pre = query(1, (x-1) % M + 1, M);
Node mid = query(1, 1, M);
Node suf = query(1, 1, (y-1) % M + 1);
// pre;
ll ret = (pre.ans[0] + pre.sum[0] * (n * M % mod)) % mod;
ll s = (pre.sum[0] + mid.sum[d] * n) % mod;
// mid;
ret = (ret + mid.ans[d] * n) % mod;
//ret = (ret + (mid.sum[d] * (((n&1) ? ((n-1)/2)%mod*n : (n/2)%mod*(n-1))%mod)) * M) % mod;
ret = (ret + (mid.sum[d] * cal(n) % mod) * M) % mod;
// suf;
ret = (ret + s * (suf.r - suf.l + 1) + suf.ans[d]) % mod;
return ret;
} else
return query(1, (x-1) % M + 1, (y-1) % M + 1).ans[0];
}
int main () {
int cas, n, k;
ll x, y;
scanf("%d", &cas);
while (cas--) {
init();
scanf("%d", &n);
while (n--) {
scanf("%d%lld%lld", &k, &x, &y);
if (k == 1) {
modify(1, x, y);
modify(1, x + N, y);
} else
printf("%d\n", solve(x, y));
}
}
return 0;
}
void pushup (int u) {
int d = (nd[lson(u)].r - nd[lson(u)].l + 1) & 1;
int L = (nd[rson(u)].r - nd[rson(u)].l + 1) % mod;
for (int i = 0; i < 2; i++) {
nd[u].sum[i] = (nd[lson(u)].sum[i] + nd[rson(u)].sum[i^d]) % mod;
nd[u].ans[i] = (nd[lson(u)].ans[i] + nd[lson(u)].sum[i] * L % mod + nd[rson(u)].ans[i^d]) % mod;
}
}
Node query(int u, int l, int r) {
if (l == nd[u].l && nd[u].r == r)
return nd[u];
int mid = (nd[u].l + nd[u].r) / 2;
if (l > mid)
return query(rson(u), l, r);
else if (r <= mid)
return query(lson(u), l, r);
else {
Node ret;
ret.l = l; ret.r = r;
Node lc = query(lson(u), l, mid);
Node rc = query(rson(u), mid + 1, r);
int d = (lc.r - lc.l + 1) & 1;
int L = (rc.r - rc.l + 1) % mod;
for (int i = 0; i < 2; i++) {
ret.sum[i] = (lc.sum[i] + rc.sum[i^d]) % mod;
ret.ans[i] = (lc.ans[i] + lc.sum[i] * L % mod + rc.ans[i^d]) % mod;
}
return ret;
}
}
void modify (int u, int x, int v) {
if (nd[u].l == nd[u].r) {
nd[u].sum[0] = nd[u].ans[0] = v;
nd[u].sum[1] = nd[u].ans[1] = 0;
return;
}
int mid = (nd[u].l + nd[u].r) / 2;
if (x <= mid)
modify(lson(u), x, v);
if (x > mid)
modify(rson(u), x, v);
pushup(u);
}
void build_segTree(int u, int l, int r) {
nd[u].l = l; nd[u].r = r;
if (l == r) {
int v = str[(l-1)%N] - ‘0‘;
nd[u].sum[0] = nd[u].ans[0] = v;
nd[u].sum[1] = nd[u].ans[1] = 0;
return ;
}
int mid = (l + r) / 2;
build_segTree(lson(u), l, mid);
build_segTree(rson(u), mid + 1, r);
pushup(u);
}
时间: 2024-10-10 07:06:22