Hadoop实战之二~ hadoop作业调度详解(1)

前言

对Hadoop的最感兴趣的地方,也就在于Hadoop的作业调度了,在正式介绍如何搭建Hadoop之前,深入理解一下Hadoop的作业调度很有必要。我们不一定能用得上Hadoop,但是如果理通顺Hadoop的分布式调度原理,在有需要的时候未必不能自己写一个Mini Hadoop~: )

开始

本文转载自:http://www.cnblogs.com/shipengzhi/articles/2487429.html

Map/Reduce是一个用于大规模数据处理的分布式计算模型,它最初是由Google工程师设计并实现的,Google已经将它完整的MapReduce论文公开发布了。其中对它的定义是,Map/Reduce是一个编程模型(programming model),是一个用于处理和生成大规模数据集(processing and generating large data sets)的相关的实现。用户定义一个map函数来处理一个key/value对以生成一批中间的key/value对,再定义一个reduce函数将所有这些中间的有着相同key的values合并起来。很多现实世界中的任务都可用这个模型来表达。

Hadoop的Map/Reduce框架也是基于这个原理实现的,下面简要介绍一下Map/Reduce框架主要组成及相互的关系。

2.1       总体结构

2.1.1            Mapper和Reducer

运行于Hadoop的MapReduce应用程序最基本的组成部分包括一个Mapper和一个Reducer类,以及一个创建JobConf的执行程序,在一些应用中还可以包括一个Combiner类,它实际也是Reducer的实现。

2.1.2            JobTracker和TaskTracker

它们都是由一个master服务JobTracker和多个运行于多个节点的slaver服务TaskTracker两个类提供的服务调度的。master负责调度job的每一个子任务task运行于slave上,并监控它们,如果发现有失败的task就重新运行它,slave则负责直接执行每一个task。TaskTracker都需要运行在HDFS的DataNode上,而JobTracker则不需要,一般情况应该把JobTracker部署在单独的机器上。

2.1.3            JobClient

每一个job都会在用户端通过JobClient类将应用程序以及配置参数Configuration打包成jar文件存储在HDFS,并把路径提交到JobTracker的master服务,然后由master创建每一个Task(即MapTask和ReduceTask)将它们分发到各个TaskTracker服务中去执行。

2.1.4            JobInProgress

JobClient提交job后,JobTracker会创建一个JobInProgress来跟踪和调度这个job,并把它添加到job队列里。JobInProgress会根据提交的job jar中定义的输入数据集(已分解成FileSplit)创建对应的一批TaskInProgress用于监控和调度MapTask,同时在创建指定数目的TaskInProgress用于监控和调度ReduceTask,缺省为1个ReduceTask。

2.1.5            TaskInProgress

JobTracker启动任务时通过每一个TaskInProgress来launchTask,这时会把Task对象(即MapTask和ReduceTask)序列化写入相应的TaskTracker服务中,TaskTracker收到后会创建对应的TaskInProgress(此TaskInProgress实现非JobTracker中使用的TaskInProgress,作用类似)用于监控和调度该Task。启动具体的Task进程是通过TaskInProgress管理的TaskRunner对象来运行的。TaskRunner会自动装载job.jar,并设置好环境变量后启动一个独立的java child进程来执行Task,即MapTask或者ReduceTask,但它们不一定运行在同一个TaskTracker中。

2.1.6            MapTask和ReduceTask

一个完整的job会自动依次执行Mapper、Combiner(在JobConf指定了Combiner时执行)和Reducer,其中Mapper和Combiner是由MapTask调用执行,Reducer则由ReduceTask调用,Combiner实际也是Reducer接口类的实现。Mapper会根据job jar中定义的输入数据集按<key1,value1>对读入,处理完成生成临时的<key2,value2>对,如果定义了Combiner,MapTask会在Mapper完成调用该Combiner将相同key的值做合并处理,以减少输出结果集。MapTask的任务全完成即交给ReduceTask进程调用Reducer处理,生成最终结果<key3,value3>对。这个过程在下一部分再详细介绍。

下图描述了Map/Reduce框架中主要组成和它们之间的关系:

2.2       Job创建过程

2.2.1            JobClient.runJob() 开始运行job并分解输入数据集

一个MapReduce的Job会通过JobClient类根据用户在JobConf类中定义的InputFormat实现类来将输入的数据集分解成一批小的数据集,每一个小数据集会对应创建一个MapTask来处理。JobClient会使用缺省的FileInputFormat类调用FileInputFormat.getSplits()方法生成小数据集,如果判断数据文件是isSplitable()的话,会将大的文件分解成小的FileSplit,当然只是记录文件在HDFS里的路径及偏移量和Split大小。这些信息会统一打包到jobFile的jar中并存储在HDFS中,再将jobFile路径提交给JobTracker去调度和执行。

2.2.2            JobClient.submitJob() 提交job到JobTracker

jobFile的提交过程是通过RPC模块(有单独一章来详细介绍)来实现的。大致过程是,JobClient类中通过RPC实现的Proxy接口调用JobTracker的submitJob()方法,而JobTracker必须实现JobSubmissionProtocol接口。JobTracker则根据获得的jobFile路径创建与job有关的一系列对象(即JobInProgress和TaskInProgress等)来调度并执行job。

JobTracker创建job成功后会给JobClient传回一个JobStatus对象用于记录job的状态信息,如执行时间、Map和Reduce任务完成的比例等。JobClient会根据这个JobStatus对象创建一个NetworkedJob的RunningJob对象,用于定时从JobTracker获得执行过程的统计数据来监控并打印到用户的控制台。

与创建Job过程相关的类和方法如下图所示

2.3       Job执行过程

上面已经提到,job是统一由JobTracker来调度的,具体的Task分发给各个TaskTracker节点来执行。下面通过源码来详细解析执行过程,首先先从JobTracker收到JobClient的提交请求开始。

2.3.1            JobTracker初始化Job和Task队列过程

2.3.1.1     JobTracker.submitJob() 收到请求

当JobTracker接收到新的job请求(即submitJob()函数被调用)后,会创建一个JobInProgress对象并通过它来管理和调度任务。JobInProgress在创建的时候会初始化一系列与任务有关的参数,如job jar的位置(会把它从HDFS复制本地的文件系统中的临时目录里),Map和Reduce的数据,job的优先级别,以及记录统计报告的对象等。

2.3.1.2     JobTracker.resortPriority() 加入队列并按优先级排序

JobInProgress创建后,首先将它加入到jobs队列里,分别用一个map成员变量jobs用来管理所有jobs对象,一个list成员变量jobsByPriority用来维护jobs的执行优先级别。之后JobTracker会调用resortPriority()函数,将jobs先按优先级别排序,再按提交时间排序,这样保证最高优先并且先提交的job会先执行。

2.3.1.3     JobTracker.JobInitThread 通知初始化线程

然后JobTracker会把此job加入到一个管理需要初始化的队列里,即一个list成员变量jobInitQueue里。通过此成员变量调用notifyAll()函数,会唤起一个用于初始化job的线程JobInitThread来处理(JobTracker会有几个内部的线程来维护jobs队列,它们的实现都在JobTracker代码里,稍候再详细介绍)。JobInitThread收到信号后即取出最靠前的job,即优先级别最高的job,调用JobInProgress的initTasks()函数执行真正的初始化工作。

2.3.1.4     JobInProgress.initTasks() 初始化TaskInProgress

Task的初始化过程稍复杂些,首先步骤JobInProgress会创建Map的监控对象。在initTasks()函数里通过调用JobClient的readSplitFile()获得已分解的输入数据的RawSplit列表,然后根据这个列表创建对应数目的Map执行管理对象TaskInProgress。在这个过程中,还会记录该RawSplit块对应的所有在HDFS里的blocks所在的DataNode节点的host,这个会在RawSplit创建时通过FileSplit的getLocations()函数获取,该函数会调用DistributedFileSystem的getFileCacheHints()获得(这个细节会在HDFS模块中讲解)。当然如果是存储在本地文件系统中,即使用LocalFileSystem时当然只有一个location即“localhost”了。

其次JobInProgress会创建Reduce的监控对象,这个比较简单,根据JobConf里指定的Reduce数目创建,缺省只创建1个Reduce任务。监控和调度Reduce任务的也是TaskInProgress类,不过构造方法有所不同,TaskInProgress会根据不同参数分别创建具体的MapTask或者ReduceTask。

JobInProgress创建完TaskInProgress后,最后构造JobStatus并记录job正在执行中,然后再调用JobHistory.JobInfo.logStarted()记录job的执行日志。到这里JobTracker里初始化job的过程全部结束,执行则是通过另一异步的方式处理的,下面接着介绍它。

与初始化Job过程相关的类和方法如下图所示

2.3.2            TaskTracker执行Task的过程

Task的执行实际是由TaskTracker发起的,TaskTracker会定期(缺省为10秒钟,参见MRConstants类中定义的HEARTBEAT_INTERVAL变量)与JobTracker进行一次通信,报告自己Task的执行状态,接收JobTracker的指令等。如果发现有自己需要执行的新任务也会在这时启动,即是在TaskTracker调用JobTracker的heartbeat()方法时进行,此调用底层是通过IPC层调用Proxy接口(在IPC章节详细介绍)实现。这个过程实际比较复杂,下面一一简单介绍下每个步骤。

2.3.2.1     TaskTracker.run() 连接JobTracker

TaskTracker的启动过程会初始化一系列参数和服务(另有单独的一节介绍),然后尝试连接JobTracker服务(即必须实现InterTrackerProtocol接口),如果连接断开,则会循环尝试连接JobTracker,并重新初始化所有成员和参数,此过程参见run()方法。

2.3.2.2     TaskTracker.offerService() 主循环

如果连接JobTracker服务成功,TaskTracker就会调用offerService()函数进入主执行循环中。这个循环会每隔10秒与JobTracker通讯一次,调用transmitHeartBeat()获得HeartbeatResponse信息。然后调用HeartbeatResponse的getActions()函数获得JobTracker传过来的所有指令即一个TaskTrackerAction数组。再遍历这个数组,如果是一个新任务指令即LaunchTaskAction则调用startNewTask()函数执行新任务,否则加入到tasksToCleanup队列,交给一个taskCleanupThread线程来处理,如执行KillJobAction或者KillTaskAction等。

2.3.2.3     TaskTracker.transmitHeartBeat() 获取JobTracker指令

在transmitHeartBeat()函数处理中,TaskTracker会创建一个新的TaskTrackerStatus对象记录目前任务的执行状况,然后通过IPC接口调用JobTracker的heartbeat()方法发送过去,并接受新的指令,即返回值TaskTrackerAction数组。在这个调用之前,TaskTracker会先检查目前执行的Task数目以及本地磁盘的空间使用情况等,如果可以接收新的Task则设置heartbeat()的askForNewTask参数为true。操作成功后再更新相关的统计信息等。

2.3.2.4     TaskTracker.startNewTask() 启动新任务

此函数的主要任务就是创建TaskTracker$TaskInProgress对象来调度和监控任务,并把它加入到runningTasks队列中。完成后则调用localizeJob()真正初始化Task并开始执行。

2.3.2.5     TaskTracker.localizeJob() 初始化job目录等

此函数主要任务是初始化工作目录workDir,再将job jar包从HDFS复制到本地文件系统中,调用RunJar.unJar()将包解压到工作目录。然后创建一个RunningJob并调用addTaskToJob()函数将它添加到runningJobs监控队列中。完成后即调用launchTaskForJob()开始执行Task。

2.3.2.6     TaskTracker.launchTaskForJob() 执行任务

启动Task的工作实际是调用TaskTracker$TaskInProgress的launchTask()函数来执行的。

2.3.2.7     TaskTracker$TaskInProgress.launchTask() 执行任务

执行任务前先调用localizeTask()更新一下jobConf文件并写入到本地目录中。然后通过调用Task的createRunner()方法创建TaskRunner对象并调用其start()方法最后启动Task独立的java执行子进程。

2.3.2.8     Task.createRunner() 创建启动Runner对象

Task有两个实现版本,即MapTask和ReduceTask,它们分别用于创建Map和Reduce任务。MapTask会创建MapTaskRunner来启动Task子进程,而ReduceTask则创建ReduceTaskRunner来启动。

2.3.2.9     TaskRunner.start() 启动子进程真正执行Task

这里是真正启动子进程并执行Task的地方。它会调用run()函数来处理。执行的过程比较复杂,主要的工作就是初始化启动java子进程的一系列环境变量,包括设定工作目录workDir,设置CLASSPATH环境变量等(需要将TaskTracker的环境变量以及job jar的路径合并起来)。然后装载job jar包,调用runChild()方法启动子进程,即通过ProcessBuilder来创建,同时子进程的stdout/stdin/syslog的输出定向到该Task指定的输出日志目录中,具体的输出通过TaskLog类来实现。这里有个小问题,Task子进程只能输出INFO级别日志,而且该级别是在run()函数中直接指定,不过改进也不复杂。

与Job执行过程相关的类和方法如下图所示

2.4       JobTracker和TaskTracker

如上面所述,JobTracker和TaskTracker是MapReduce框架最基本的两个服务,其他所有处理均由它们调度执行,下面简单介绍它们内部提供的服务及创建的线程,详细过程下回分解J

2.4.1            JobTracker的服务和线程

JobTracker是MapReduce框架中最主要的类之一,所有job的执行都由它来调度,而且Hadoop系统中只配置一个JobTracker应用。启动JobTracker后它会初始化若干个服务以及若干个内部线程用来维护job的执行过程和结果。下面简单介绍一下它们。

首先,JobTracker会启动一个interTrackerServer,端口配置在Configuration中的"mapred.job.tracker"参数,缺省是绑定8012端口。它有两个用途,一是用于接收和处理TaskTracker的heartbeat等请求,即必须实现InterTrackerProtocol接口及协议。二是用于接收和处理JobClient的请求,如submitJob,killJob等,即必须实现JobSubmissionProtocol接口及协议。

其次,它会启动一个infoServer,运行StatusHttpServer,缺省监听50030端口。是一个web服务,用于给用户提供web界面查询job执行状况的服务。

JobTracker还会启动多个线程,ExpireLaunchingTasks线程用于停止那些未在超时时间内报告进度的Tasks。ExpireTrackers线程用于停止那些可能已经当掉的TaskTracker,即长时间未报告的TaskTracker将不会再分配新的Task。RetireJobs线程用于清除那些已经完成很长时间还存在队列里的jobs。JobInitThread线程用于初始化job,这在前面章节已经介绍。TaskCommitQueue线程用于调度Task的那些所有与FileSystem操作相关的处理,并记录Task的状态等信息。

2.4.2            TaskTracker的服务和线程

TaskTracker也是MapReduce框架中最主要的类之一,它运行于每一台DataNode节点上,用于调度Task的实际运行工作。它内部也会启动一些服务和线程。

TaskTracker也会启动一个StatusHttpServer服务来提供web界面的查询Task执行状态的工具。

其次,它还会启动一个taskReportServer服务,这个用于提供给它的子进程即TaskRunner启动的MapTask或者ReduceTask向它报告状况,子进程的启动命令实现在TaskTracker$Child类中,由TaskRunner.run()通过命令行参数传入该服务地址和端口,即调用TaskTracker的getTaskTrackerReportAddress(),这个地址会在taskReportServer服务创建时获得。

TaskTracker也会启动一个MapEventsFetcherThread线程用于获取Map任务的输出数据信息。

时间: 2024-10-09 17:49:18

Hadoop实战之二~ hadoop作业调度详解(1)的相关文章

hadoop 学习笔记:mapreduce框架详解

hadoop 学习笔记:mapreduce框架详解 开始聊mapreduce,mapreduce是hadoop的计算框架,我 学hadoop是从hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能是我做技术研究的 思路有关,我开始学习某一套技术总是想着这套技术到底能干什么,只有当我真正理解了这套技术解决了什么问题时候,我后续的学习就能逐步的加快,而学习 hdfs时候我就发现,要理解hadoop框架的意义,hdfs和mapreduce是密不

会点网袁帅: O2O实际运用:二维码详解

会点网袁帅: O2O实际运用:二维码详解 [导读]:在O2O实际运作中,小小的二维码有着至关重要的作用.具体有什么作用和怎么来实现二维码的价值呢? 相对于传统模式来说,移动互联网的移动状态和随时随地的特性,让内容商对于消费者的接触越来越全方位,200多年来工业社会形成的基于信息不对称构建的商业模式面临着一个全新的挑战,现在很多企业这2年对O2O的关注和实战越来越多,很多企业如果如果简单在线上搞个网店,线下搞了实体店,在面向消费者的营销.交易和消费体验没有让消费者感觉创意性和立体感,这样的O2O是

Android-- Android事件机制之二:onTouch详解

Android事件机制之二:onTouch详解 在其中对OntouchEvent中的总结中,不是很具体.本文将主要对onTouch进行总结. onTouch是Android系统中整个事件机制的基础.Android中的其他事件,如onClick.onLongClick等都是以onTouch为基础的. onTouch包括从手指按下到离开手机屏幕的整个过程,在微观形式上,具体表现为action_down.action_move和action_up等过程. onTouch两种主要定义形式如下: (1)在

Android Touch系统简介(二):实例详解onInterceptTouchEvent与onTouchEvent的调用过程

上一篇文章主要讲述了Android的TouchEvent的分发过程,其中有两个重要的函数:onInterceptTouchEvent和onTouchEvent,这两个函数可被重装以完成特定的逻辑.onInterceptTouchEvent的定义为于ViewGroup中,默认返回值为false,表示不拦截TouchEvent.onTouchEvent的定义位于View中,当ViewGroup要调用onTouchEvent时,会利用super.onTouchEvent.ViewGroup调用onTo

邻接矩阵有向图(二)之 C++详解

本章是通过C++实现邻接矩阵有向图. 目录 1. 邻接矩阵有向图的介绍 2. 邻接矩阵有向图的代码说明 3. 邻接矩阵有向图的完整源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 邻接矩阵有向图的介绍 邻接矩阵有向图是指通过邻接矩阵表示的有向图. 上面的图G2包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"<A,B>,<B,C>,<B,E>,<

轻量级自动化运维工具ansible之二:playbook详解

在介绍playbook之前,我们先了解一下YAML语言,因为playbook是用YAML语言编写的 一.YAML 1.YAML是一种可读性高的用来表达资料序列的语言,其语法和其他高阶语言类似,并且可以简单表达清单.散列表.标量等数据结构.所有的yaml文件都以"---"开头表示开始一个document,所有的列表元素以"-"开头,键值对用":",后面的空格是必须的下面是一个示例: ---   #打头符可省略 - name: John Smith

Kruskal算法(二)之 C++详解

本章是克鲁斯卡尔算法的C++实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的代码说明 6. 克鲁斯卡尔算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树. 例如,对于如上图G4所示的

深入浅出Spring(二) IoC详解

上次的博客深入浅出Spring(一)Spring概述中,我给大家简单介绍了一下Spring相关概念.重点是这么一句:Spring是为了解决企业应用开发的复杂性而创建的一个轻量级的控制反转(IoC)和面向切面(AOP)的容器框架.在这句话中重点有两个,一个是IoC,另一个是AOP.今天我们讲第一个IoC. IoC概念 控制反转(Inversion of Control)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题. 它还有一个名字叫做依赖注入(Dependency Injection)

文本处理工具之二 sed命令详解

======博主所学知识来着于恩师马哥的亲授====== 马哥教育"2014夏令营"开始啦!!!马哥教育是目前性价比最高的Linux培训,国内好评度排名第一,并被网友称为Linux界的"黄埔军校",全部课程采用Centos6.5x86_64讲解,经过几期网络班的总结和锤炼,逐渐完善的课程体系,学员学习进度监督和优质的考试系统检验学员掌握程度,活跃的在线答疑环节,名师陪伴,牛人指点,精彩不容错过. 详情猛戳:http://www.magedu.com/ 课程内容:ht