【NLP】course

http://52opencourse.com/235/%E6%96%AF%E5%9D%A6%E7%A6%8F%E5%A4%A7%E5%AD%A6%E8%87%AA%E7%84%B6%E8%AF%AD%E8%A8%80%E5%A4%84%E7%90%86%E7%AC%AC%E4%B8%83%E8%AF%BE-%E6%83%85%E6%84%9F%E5%88%86%E6%9E%90%EF%BC%88sentiment-analysis%EF%BC%89

时间: 2024-10-19 14:10:43

【NLP】course的相关文章

【NLP】基于机器学习角度谈谈CRF

基于机器学习角度谈谈CRF 作者:白宁超 2016年8月3日08:39:14 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应用.本文源于笔者做语句识别序列标注过程中,对条件随机场的了解,逐步研究基于自然语言处理方面的应用.成文主要源于自然语言处理.机器学习.统计学习方法和部分网上资料对CRF介绍的相关的相关,最后进行大量研究整理汇总成体系知识.文章布局如下:第一节介绍CRF相关的基础统计知识:第二节介绍基于自然语言角

【NLP】条件随机场知识扩展延伸

条件随机场知识扩展延伸 作者:白宁超 2016年8月3日19:47:55 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应用.本文源于笔者做语句识别序列标注过程中,对条件随机场的了解,逐步研究基于自然语言处理方面的应用.成文主要源于自然语言处理.机器学习.统计学习方法和部分网上资料对CRF介绍的相关的相关,最后进行大量研究整理汇总成体系知识.文章布局如下:第一节介绍CRF相关的基础统计知识:第二节介绍基于自然语言角度的

【NLP】漫步条件随机场系列文章(一)

前戏:一起走进条件随机场 作者:白宁超 2016年8月2日13:59:46 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应用.本文源于笔者做语句识别序列标注过程中,对条件随机场的了解,逐步研究基于自然语言处理方面的应用.成文主要源于自然语言处理.机器学习.统计学习方法和部分网上资料对CRF介绍的相关的相关,最后进行大量研究整理汇总成体系知识.文章布局如下:第一节介绍CRF相关的基础统计知识:第二节介绍基于自然语言角度

【NLP】蓦然回首:谈谈学习模型的评估系列文章(三)

基于NLP角度的模型评价方法 作者:白宁超 2016年7月19日19:04:51 摘要:写本文的初衷源于基于HMM模型序列标注的一个实验,实验完成之后,迫切想知道采用的序列标注模型的好坏,有哪些指标可以度量.于是,就产生了对这一专题进度学习总结,这样也便于其他人参考,节约大家的时间.本文依旧旨在简明扼要梳理出模型评估核心指标,重点达到实用.本文布局如下:第一章采用统计学习角度介绍什么是学习模型以及如何选择,因为现今的自然语言处理方面大都采用概率统计完成的,事实证明这也比规则的方法好.第二章采用基

【NLP】揭秘马尔可夫模型神秘面纱系列文章(三)

向前算法解决隐马尔可夫模型似然度问题 作者:白宁超 2016年7月11日22:54:57 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无什么用场.直到学习自然语言处理时,才真正使用到隐马尔可夫模型,并体会到此模型的妙用之处.马尔可夫模型在处理序列分类时具体强大的功能,诸如解决:词类标注.语音识别.句子切分.字素音位转换.局部句法剖析.语块分析.命名实体识别.信息抽取等.另外广泛应用于自然科学.工程技术.生物科技.公用事业.信道编码等多个领域.本文写作思路如下

【NLP】揭秘马尔可夫模型神秘面纱系列文章(五)

向前向后算法解决隐马尔可夫模型机器学习问题 作者:白宁超 2016年7月12日14:28:10 摘要:最早接触马尔可夫模型的定义源于吴军先生<数学之美>一书,起初觉得深奥难懂且无什么用场.直到学习自然语言处理时,才真正使用到隐马尔可夫模型,并体会到此模型的妙用之处.马尔可夫模型在处理序列分类时具体强大的功能,诸如解决:词类标注.语音识别.句子切分.字素音位转换.局部句法剖析.语块分析.命名实体识别.信息抽取等.另外广泛应用于自然科学.工程技术.生物科技.公用事业.信道编码等多个领域.本文写作思

【NLP】Conditional Language Models

Language Model estimates the probs that the sequences of words can be a sentence said by a human. Training it, we can get the embeddings of the whole vocabulary. UnConditional Language Model  just assigns probs to sequences of words. That's to say, g

【NLP】Attention Model(注意力模型)学习总结

最近一直在研究深度语义匹配算法,搭建了个模型,跑起来效果并不是很理想,在分析原因的过程中,发现注意力模型在解决这个问题上还是很有帮助的,所以花了两天研究了一下. 此文大部分参考深度学习中的注意力机制(2017版) 张俊林的博客,不过添加了一些个人的思考与理解过程.在github上找到一份基于keras框架实现的可运行的注意模型代码:Attention_Network_With_Keras.如有不足之处,欢迎交流指教. 注意力模型:对目标数据进行加权变化.人脑的注意力模型,说到底是一种资源分配模型

【NLP】干货!Python NLTK结合stanford NLP工具包进行文本处理

干货!详述Python NLTK下如何使用stanford NLP工具包 作者:白宁超 2016年11月6日19:28:43 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公开数据集.模型上提供了全面.易用的接口,涵盖了分词.词性标注(Part-Of-Speech tag, POS-tag).命名实体识别(Named Entity Recognition, NER).句法分析(Syntactic Parse)等各项 NLP 领域的功能.

【NLP】十分钟学习自然语言处理

十分钟学习自然语言处理概述 作者:白宁超 2016年9月23日00:24:12 摘要:近来自然语言处理行业发展朝气蓬勃,市场应用广泛.笔者学习以来写了不少文章,文章深度层次不一,今天因为某种需要,将文章全部看了一遍做个整理,也可以称之为概述.关于这些问题,博客里面都有详细的文章去介绍,本文只是对其各个部分高度概括梳理.(本文原创,转载注明出处:十分钟学习自然语言处理概述  ) 1 什么是文本挖掘? 文本挖掘是信息挖掘的一个研究分支,用于基于文本信息的知识发现.文本挖掘的准备工作由文本收集.文本分