[algorithm]求最长公共子序列问题

最直白方法:时间复杂度是O(n3), 空间复杂度是常数

reference:http://blog.csdn.net/monkeyandy/article/details/7957263

/**

** [email protected]

** http://blog.csdn.net/MonkeyAndy

**/

首先介绍动态规划方法的相关知识

动态规划方法的基本思想:

分成若干个子问题,先求解子问题,然后根据子问题的解求得原问题的解。经分解得到的子问题往往不是互相独立的。可重复利用!

其核心思想就是分治,分治方法的特点是分解后的子问题相对独立,可以通过简单的合并算法得到原问题的解!

动态规划方法的应用对象:
优化问题:

  1. 一个优化问题可能有很多可行解,每个解都有一个求解代价,
  2. 我们希望选择一个具有最少代价的解。
  3. 一个优化问题可能有多个优化解。

动态规划方法:
当一个优化问题可分为多个子问题,子问题的解在构造上一级问题的求解过程中被重复使用。 这样可以节省计算时间与空间。

动态规划算法的步骤:

  1. 分析优化解的结构
  2. 递归地定义最优解的代价
  3. 自底向上地计算优化解的代价保存之,并获取构造最优解的信息。
  4. 根据计算优化解的代价,构造优化解

可用动态规划方法求解的问题必须满足的条件

1. 具有优化子结构(Optimal substructure)

如果一个问题的优化解包含了他的子问题的优化解,则称此问题具有优化结构。如,A1A2A3A4A5A6 的优化解是 (A1 ( A2A3)) ((A4A5)A6),其中A1 ( A2A3)和(A4A5)A6),分别是A1A2A3和A4A5A6的解。

优化结构是应用动态规划方法的一个条件。是必要条件!
     2. 具有重叠子问题(Overlapping sub-problems)

如果递归算法求解一个优化问题时,需要反复求解相同的子问题,则称该优化问题具有重叠子问题。
       动态规划算法利用该性质,以求得的子问题的解保存后,自底向上地,重复利用子问题的解获得上级问题的解,节省空间开销和时间开销。
       如果不具备重叠子问题的性质动态规划方法的空间开销和时间开销很大。利用动态规划算法没有意义!

求最长公共子序列

1. 子序列定义
    设x=(x1, x2, ... xm)是一个序列, z=(z1, z2, ... zm) 是x的一个子序列,如果存在1?i1<i2<...<ik<m, 使xij=zj
    z=(z1, z2, ... zm)即是x=(x1, x2, ... xm)中删除一些元素以后得到的序列。

2.公共子序列定义
    Z是序列X与Y的公共子序列,如果Z是X的子序列且Z是Y的子序列。
     
    3.最长公共子序列问题(LCS)
    输入:X=(x1, x2, ... xn),Y=(y1, y2, ...ym)
    输出:X与Y的最长公共子序列Z

最长公共子序列结构分析
        定义. 设X=(x1 , x2 , ... xn) 是一个序列, Xi表示X的第i个前缀,即 Xi=(x1 , ... xi )。
        例.  X=(A,B,D,C,A),  X1=(A),  X2=(A,B),  X3=(A,B,D)

优化解的结构
    定理1(LCS的优化结构)设X=(x1 , ... xm), Y=(y1 , y2 , ... yn)是两个序列,Z=(z1 , z2 , ... zk) 是X与Y的LCS。下列结论成立:

  1. 如xm= yn, 则zk=xm=yn, Zk-1是Xm-1和Yn-1的LCS,即,LCS(X,Y)=LCS(Xm-1,Yn-1)+xm
  2. 若xm != yn,且zk!=xm,则Z是Xm-1和Y的LCS,即   LCS(X,Y)=LCS(Xm-1,Y)
  3. 若xm != yn , 且zk !=yn,则Z是X与Yn-1的LCS,即    LCS(X,Y)=LCS(X,Yn-1)

例如:

建立求解LCS长度的递归方程

If xm= yn, xm属于X和Y的LCS,必须求解Xm-1和Yn-1的LCS。
If xm !=yn , 必须求解Xm-1和Y的LCS以及X和Yn-1 的LCS,长者是X和Y的LCS。C[i,j] 表示Xi与Yj的LCS的长度,则建立求解LCS长度的递归方程

LCS长度的计算
    1.基本思想
       计算C[i,j] 需先计算C[i-1,j-1]、C[i,j-1]、C[i-1,j]

C[i-1,j-1] C[ i, j-1]
C[i-1,   j] C[  i,   j]

先计算出第0行与第0列,然后逐行计算。

2.   算法

[cpp] view plaincopy

  1. /**
  2. *[email protected]
  3. *[email protected] 2012/09/08
  4. * m : x的长度
  5. *  n : y的长度
  6. *  c : xi与yi的LCS的长度
  7. *  b : 用于标记xi和yi的关系
  8. **/
  9. void LCSLength( int m, int n, char *x, char *y int **c, Type **b )
  10. {
  11. int i, j;
  12. /*c 初始化*/
  13. for ( i=1; i<=m; i++) c[ 0 ][ i ]=0;
  14. for( j=1; j<=n, j++) c[ j ][0 ]=0;
  15. for ( i=1; i<=m; i++)
  16. for( j=1; j<=n, j++)
  17. {
  18. if(x[i]==y[j])  //xi = yj 时LCS 增1
  19. {
  20. c[ i ][ j ]=c[ i-1 ][ j-1]+1;
  21. b[ i ][ j ]=‘\‘‘;
  22. }
  23. else if ( c[i-1][j] >= c[i][j-1]) //当xi ≠ yj时保存长子序列
  24. {
  25. c[ i ][ j ]=c[ i-1 ][ j];
  26. b[ i ][ j ]=‘|‘;
  27. }
  28. else
  29. {
  30. c[ i ][ j ]=c[ i ][ j-1];
  31. b[ i ][ j ]=‘--‘;
  32. }
  33. }
  34. }

3.   构造LCS算法

[cpp] view plaincopy

  1. /**
  2. *[email protected]
  3. *[email protected] 2012/09/08
  4. * i : x的长度
  5. *  j : y的长度
  6. *  x : x字符串
  7. *  b : 用于标记xi和yi的关系
  8. **/
  9. void LCS( int i, int j, char *x, Type **b )
  10. {
  11. if ( i==0 || j==0) return;
  12. if (b[ i ][ j ] ==‘\‘‘)//当xi = yj 时,输出xi ,并删除xi 和 yj ,之后在子序列中继续求解LCS
  13. {
  14. LCS(i-1, j-1, x, b);
  15. out<<x[ i ];
  16. }
  17. else if ( b[i][j] == ‘|‘)//当Xi-1 和 Yj 的LCS不小于Xi 和 Yj-1 的LCS 时
  18. LCS(i-1, j, x, b);    //在Xi-1 和 Yj中继续求解LCS;否则,在Xi 和 Yj-1 中继续求解LCS;
  19. else
  20. LCS( i, j-1, x, b);
  21. }

LCSLength算法的时间复杂性O(mn)

时间: 2024-11-05 15:59:04

[algorithm]求最长公共子序列问题的相关文章

HDU 1243 反恐训练营 (动态规划求最长公共子序列)

反恐训练营 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 3040    Accepted Submission(s): 693 Problem Description 当今国际反恐形势很严峻,特别是美国"9.11事件"以后,国际恐怖势力更是有恃无恐,制造了多起骇人听闻的恐怖事件.基于此,各国都十分担心恐怖势力会对本国社会造

(hdu step 3.2.2)Common Subsequence(简单dp:求最长公共子序列的长度)

在写题解之前给自己打一下广告哈~..抱歉了,希望大家多多支持我在CSDN的视频课程,地址如下: http://edu.csdn.net/course/detail/209 题目: Common Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 976 Accepted Submission(s): 538   Probl

codevs 1862 最长公共子序列(求最长公共子序列长度并统计最长公共子序列的个数)

题目描述 Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X="x0,x1,-,xm-1",序列Y="y0,y1,-,yk-1"是X的子序列,存在X的一个严格递增下标序列<i0,i1,-,ik-1>,使得对所有的j=0,1,-,k-1,有xij = yj.例如,X="ABCBDAB",Y="BCDB"是X的一个子序

UVA 10635--Prince and Princess+nlgn求最长公共子序列

题目链接:点击进入 刚看到这题目还以为又碰到水题了,结果写了个O(n^2)的代码交上去超时了,才发现n有250*250那么大.后面在网上找到了一个nlgn求最长上升子序列的方法,才过了.这个nlgn算法的主要思想是将最长公共子序列转成最长上升子序列,然后用最长上升子序列nlgn的算法求解.更具体的解释可以参看这篇博文:最长公共子序列(nlogn) 代码如下: #include<iostream> #include<cstring> #include<cstdio> #i

【算法】 求最长公共子序列

最长公共子序列 算法这玩意儿我完全是外行,因为从头开始就不是这个专业的再加上从小就对逻辑性强的东西苦手..所以一直没什么机会也没什么兴趣学.去年刚开始学习了python的那段时间曾经碰到过几个算法比较高级的问题,当时觉得果然这不是我的能力能驾驭的了的..总之是先记录了下来,但是对于算法这块将来的拓展和进一步学习,其实我挺没信心的 = = 问题:最长公共子序列问题(Longest Common Sequence) 子序列是指一个字符串抽掉0到若干个字符后剩下的字符串,抽取的字符不一定相邻也不一定有

求最长公共子序列长度

poj 1458  Common Subsequence http://poj.org/problem?id=1458 问题分析: 这个题是求两个序列的最长公共最序列长度,在这里要弄清楚两个问题 1:本题中所有的子序列并没有要求是连续子序列,所以在求最长子序列的时候不连续是允许的 2:哪部分子序列才是最长的 对于给定的 X = < x1, x2, ..., xm > 和 Z = < z1, z2, ..., zk > ,X序列与Z的每一个子序列都含有公共子序列(最小为0),同理,Z

九度OJ 1042 Coincidence (动态规划求最长公共子序列)

题目1042:Coincidence 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1689 解决:898 题目描述: Find a longest common subsequence of two strings. 输入: First and second line of each input case contain two strings of lowercase character a-z. There are no spaces before, inside or aft

LCS求最长公共子序列(DP)

动态规划并不是一种算法,而是一种解决问题的思路.典型的动态规划问题,如最长公共子序列(LCS),最长单调子序列(LIS)等. 动态规划分为四个步骤: 1.判断问题是否具有最优子结构 这里以LCS为例,X={x1,x2,...,xi}:Y={y1,y2,...,yj}.最长公共子序列Z={z1,z2,...,zk}: ①如果xi=yj,那么zk=xi=yj,且Zk-1是序列Xi-1和Yj-1的LCS: ②如果xi≠yj,那么zk≠xi:且Zk是序列Xi-1和Yj的LCS: ③如果xi≠yj,那么z

动态规划求最长公共子序列问题

#include<iostream> #include<string> #include<vector> using namespace std; //找两个子串str1,str2的最长公共子串substr void findLongestSubString(string &str1, string &str2, string &substr){ if (str1.empty() || str2.empty()){ return; } //定义二