本节主要内容
- 高阶函数简介
- Scala中的常用高阶函数
- SAM转换
- 函数柯里化
- 偏函数
1. 高阶函数简介
高阶函数主要有两种:一种是将一个函数当做另外一个函数的参数(即函数参数);另外一种是返回值是函数的函数。这两种在本教程的第五节 函数与闭包中已经有所涉及,这里简单地回顾一下:
(1)函数参数
//函数参数,即传入另一个函数的参数是函数
//((Int)=>String)=>String
scala> def convertIntToString(f:(Int)=>String)=f(4)
convertIntToString: (f: Int => String)String
scala> convertIntToString((x:Int)=>x+" s")
res32: String = 4 s
(2)返回值是函数的函数
//高阶函数可以产生新的函数,即我们讲的函数返回值是一个函数
//(Double)=>((Double)=>Double)
scala> def multiplyBy(factor:Double)=(x:Double)=>factor*x
multiplyBy: (factor: Double)Double => Double
scala> val x=multiplyBy(10)
x: Double => Double = <function1>
scala> x(50)
res33: Double = 500.0
Scala中的高阶函数可以说是无处不在,这点可以在Scala中的API文档中得到验证,下图给出的是Array数组的需要函数作为参数的API:
例如flatMap方法,下面是其API的详细内容:
def
flatMap[B](f: (A) ? GenTraversableOnce[B]): Array[B]
[use case]
Builds a new collection by applying a function to all elements of this array and using the elements of the resulting collections.
//下面的代码给出了该函数的用法
For example:
def getWords(lines: Seq[String]): Seq[String] = lines flatMap (line => line split "\\W+")
The type of the resulting collection is guided by the static type of array. This might cause unexpected results sometimes. For example:
// lettersOf will return a Seq[Char] of likely repeated letters, instead of a Set
def lettersOf(words: Seq[String]) = words flatMap (word => word.toSet)
// lettersOf will return a Set[Char], not a Seq
def lettersOf(words: Seq[String]) = words.toSet flatMap (word => word.toSeq)
// xs will be a an Iterable[Int]
val xs = Map("a" -> List(11,111), "b" -> List(22,222)).flatMap(_._2)
// ys will be a Map[Int, Int]
val ys = Map("a" -> List(1 -> 11,1 -> 111), "b" -> List(2 -> 22,2 -> 222)).flatMap(_._2)
//下面几行对该函数的参数进行了说明
B
the element type of the returned collection.
//指明f是函数,该函数传入的参数类型是A,返回类型是GenTraversableOnce[B]
f
the function to apply to each element.
returns
a new array resulting from applying the given collection-valued function f to each element of this array and concatenating the results.
2. Scala中的常用高阶函数
1 map函数
所有集合类型都存在map函数,例如Array的map函数的API具有如下形式:
def map[B](f: (A) ? B): Array[B]
用途:Builds a new collection by applying a function to all elements of this array.
B的含义:the element type of the returned collection.
f的含义:the function to apply to each element.
返回:a new array resulting from applying the given function f to each element of this array and collecting the results.
//这里面采用的是匿名函数的形式,字符串*n得到的是重复的n个字符串,这是scala中String操作的一个特点
scala> Array("spark","hive","hadoop").map((x:String)=>x*2)
res3: Array[String] = Array(sparkspark, hivehive, hadoophadoop)
//在函数与闭包那一小节,我们提到,上面的代码还可以简化
//省略匿名函数参数类型
scala> Array("spark","hive","hadoop").map((x)=>x*2)
res4: Array[String] = Array(sparkspark, hivehive, hadoophadoop)
//单个参数,还可以省去括号
scala> Array("spark","hive","hadoop").map(x=>x*2)
res5: Array[String] = Array(sparkspark, hivehive, hadoophadoop)
//参数在右边只出现一次的话,还可以用占位符的表示方式
scala> Array("spark","hive","hadoop").map(_*2)
res6: Array[String] = Array(sparkspark, hivehive, hadoophadoop)
List类型:
scala> val list=List("Spark"->1,"hive"->2,"hadoop"->2)
list: List[(String, Int)] = List((Spark,1), (hive,2), (hadoop,2))
//写法1
scala> list.map(x=>x._1)
res20: List[String] = List(Spark, hive, hadoop)
//写法2
scala> list.map(_._1)
res21: List[String] = List(Spark, hive, hadoop)
scala> list.map(_._2)
res22: List[Int] = List(1, 2, 2)
Map类型:
//写法1
scala> Map("spark"->1,"hive"->2,"hadoop"->3).map(_._1)
res23: scala.collection.immutable.Iterable[String] = List(spark, hive, hadoop)
scala> Map("spark"->1,"hive"->2,"hadoop"->3).map(_._2)
res24: scala.collection.immutable.Iterable[Int] = List(1, 2, 3)
//写法2
scala> Map("spark"->1,"hive"->2,"hadoop"->3).map(x=>x._2)
res25: scala.collection.immutable.Iterable[Int] = List(1, 2, 3)
scala> Map("spark"->1,"hive"->2,"hadoop"->3).map(x=>x._1)
res26: scala.collection.immutable.Iterable[String] = List(spark, hive, hadoop)
2 flatMap函数
//写法1
scala> List(List(1,2,3),List(2,3,4)).flatMap(x=>x)
res40: List[Int] = List(1, 2, 3, 2, 3, 4)
//写法2
scala> List(List(1,2,3),List(2,3,4)).flatMap(x=>x.map(y=>y))
res41: List[Int] = List(1, 2, 3, 2, 3, 4)
3 filter函数
scala> Array(1,2,4,3,5).filter(_>3)
res48: Array[Int] = Array(4, 5)
scala> List("List","Set","Array").filter(_.length>3)
res49: List[String] = List(List, Array)
scala> Map("List"->3,"Set"->5,"Array"->7).filter(_._2>3)
res50: scala.collection.immutable.Map[String,Int] = Map(Set -> 5, Array -> 7)
4 reduce函数
//写法1
scala> Array(1,2,4,3,5).reduce(_+_)
res51: Int = 15
scala> List("Spark","Hive","Hadoop").reduce(_+_)
res52: String = SparkHiveHadoop
//写法2
scala> Array(1,2,4,3,5).reduce((x:Int,y:Int)=>{println(x,y);x+y})
(1,2)
(3,4)
(7,3)
(10,5)
res60: Int = 15
scala> Array(1,2,4,3,5).reduceLeft((x:Int,y:Int)=>{println(x,y);x+y})
(1,2)
(3,4)
(7,3)
(10,5)
res61: Int = 15
scala> Array(1,2,4,3,5).reduceRight((x:Int,y:Int)=>{println(x,y);x+y})
(3,5)
(4,8)
(2,12)
(1,14)
res62: Int = 15
5 fold函数
scala> Array(1,2,4,3,5).foldLeft(0)((x:Int,y:Int)=>{println(x,y);x+y})
(0,1)
(1,2)
(3,4)
(7,3)
(10,5)
res66: Int = 15
scala> Array(1,2,4,3,5).foldRight(0)((x:Int,y:Int)=>{println(x,y);x+y})
(5,0)
(3,5)
(4,8)
(2,12)
(1,14)
res67: Int = 15
scala> Array(1,2,4,3,5).foldLeft(0)(_+_)
res68: Int = 15
scala> Array(1,2,4,3,5).foldRight(10)(_+_)
res69: Int = 25
// /:相当于foldLeft
scala> (0 /: Array(1,2,4,3,5)) (_+_)
res70: Int = 15
scala> (0 /: Array(1,2,4,3,5)) ((x:Int,y:Int)=>{println(x,y);x+y})
(0,1)
(1,2)
(3,4)
(7,3)
(10,5)
res72: Int = 15
6 scan函数
//从左扫描,每步的结果都保存起来,执行完成后生成数组
scala> Array(1,2,4,3,5).scanLeft(0)((x:Int,y:Int)=>{println(x,y);x+y})
(0,1)
(1,2)
(3,4)
(7,3)
(10,5)
res73: Array[Int] = Array(0, 1, 3, 7, 10, 15)
//从右扫描,每步的结果都保存起来,执行完成后生成数组
scala> Array(1,2,4,3,5).scanRight(0)((x:Int,y:Int)=>{println(x,y);x+y})
(5,0)
(3,5)
(4,8)
(2,12)
(1,14)
res74: Array[Int] = Array(15, 14, 12, 8, 5, 0)
3. SAM转换
在java的GUI编程中,在设置某个按钮的监听器的时候,我们常常会使用下面的代码(利用scala进行代码开发):
var counter=0;
val button=new JButton("click")
button.addActionListener(new ActionListener{
override def actionPerformed(event:ActionEvent){
counter+=1
}
})
上面代码在addActionListener方法中定义了一个实现了ActionListener接口的匿名内部类,代码中
new ActionListener{
override def actionPerformed(event:ActionEvent){
}
这部分称为样板代码,即在任何实现该接口的类中都需要这样用,重复性较高,由于ActionListener接口只有一个actionPerformed方法,它被称为simple abstract method(SAM)。SAM转换是指只给addActionListener方法传递一个参数
button.addActionListener((event:ActionEvent)=>counter+=1)
//并提供一个隐式转换,我们后面会具体讲隐式转换
implict def makeAction(action:(event:ActionEvent)=>Unit){
new ActionListener{
override def actionPerformed(event:ActionEvent){action(event)}
}
这样的话,在进行GUI编程的时候,可以省略非常多的样板代码,使代码更简洁。
4. 函数柯里化
在函数与闭包那一节中,我们定义了下面这样的一个函数
//mutiplyBy这个函数的返回值是一个函数
//该函数的输入是Doulbe,返回值也是Double
scala> def multiplyBy(factor:Double)=(x:Double)=>factor*x
multiplyBy: (factor: Double)Double => Double
//返回的函数作为值函数赋值给变量x
scala> val x=multiplyBy(10)
x: Double => Double = <function1>
//变量x现在可以直接当函数使用
scala> x(50)
res33: Double = 500.0
上述代码可以像这样使用:
scala> def multiplyBy(factor:Double)=(x:Double)=>factor*x
multiplyBy: (factor: Double)Double => Double
//这是高阶函数调用的另外一种形式
scala> multiplyBy(10)(50)
res77: Double = 500.0
那函数柯里化(curry)是怎么样的呢?其实就是将multiplyBy函数定义成如下形式
scala> def multiplyBy(factor:Double)(x:Double)=x*factor
multiplyBy: (factor: Double)(x: Double)Double
即通过(factor:Double)(x:Double)定义函数参数,该函数的调用方式如下:
//柯里化的函数调用方式
scala> multiplyBy(10)(50)
res81: Double = 500.0
//但此时它不能像def multiplyBy(factor:Double)=(x:Double)=>factor*x函数一样,可以输入单个参数进行调用
scala> multiplyBy(10)
<console>:10: error: missing arguments for method multiplyBy;
follow this method with `_‘ if you want to treat it as a partially applied funct
ion
multiplyBy(10)
^
错误提示函数multiplyBy缺少参数,如果要这么做的话,需要将其定义为偏函数
scala> multiplyBy(10)_
res79: Double => Double = <function1>
那现在我们接着对偏函数进行介绍
5. 偏函数
在数组那一节中,我们讲到,Scala中的数组可以通过foreach方法将其内容打印出来,代码如下:
scala>Array("Hadoop","Hive","Spark")foreach(x=>println(x))
Hadoop
Hive
Spark
//上面的代码等价于下面的代码
scala> def print(x:String)=println(x)
print: (x: String)Unit
scala> Array("Hadoop","Hive","Spark")foreach(print)
Hadoop
Hive
Spark
那什么是偏函数呢,所谓偏函数就是指,当函数有多个参数,而在我们使用该函数时我们不想提供所有参数(假设函数有3个函数),只提供0~2个参数,此时得到的函数便是偏函数,定义上述print函数的偏函数代码如下:
//定义print的偏函数
scala> val p=print _
p: String => Unit = <function1>
scala> Array("Hadoop","Hive","Spark")foreach(p)
Hadoop
Hive
Spark
scala> Array("Hadoop","Hive","Spark")foreach(print _)
Hadoop
Hive
Spark
在上面的简化输出代码中,下划线_并不是占位符的作用,而是作为偏函数的定义符。前面我演示了一个参数的函数偏函数的定义方式,现在我们定义一个多个输入参数的函数,代码如下:
//定义一个求各函数
scala> def sum(x:Int,y:Int,z:Int)=x+y+z
sum: (x: Int, y: Int, z: Int)Int
//不指定任何参数的偏函数
scala> val s1=sum _
s1: (Int, Int, Int) => Int = <function3>
scala> s1(1,2,3)
res91: Int = 6
//指定两个参数的偏函数
scala> val s2=sum(1,_:Int,3)
s2: Int => Int = <function1>
scala> s2(2)
res92: Int = 6
//指定一个参数的偏函数
scala> val s3=sum(1,_:Int,_:Int)
s3: (Int, Int) => Int = <function2>
scala> s3(2,3)
res93: Int = 6
在函数柯里化那部分,我们提到柯里化的multiplyBy函数输入单个参数,它并不会像没有柯里化的函数那样返回一个函数,而是会报错,如果需要其返回函数的话,需要定义其偏函数,代码如下:
//定义multiplyBy函数的偏函数,它返回的是一个函数
scala> val m=multiplyBy(10)_
m: Double => Double = <function1>
scala> m(50)
res94: Double = 500.0
添加公众微信号,可以了解更多最新Spark、Scala相关技术资讯
版权声明:本文为博主原创文章,未经博主允许不得转载。