Given a non-negative number represented as a singly linked list of digits, plus one to the number.
The digits are stored such that the most significant digit is at the head of the list.
Example:
Input: 1->2->3 Output: 1->2->4
这道题给了我们一个链表,用来模拟一个三位数,表头是高位,现在让我们进行加1运算,这道题的难点在于链表无法通过坐标来访问元素,只能通过遍历的方式进行,而这题刚好让我们从链尾开始操作,从后往前,遇到进位也要正确的处理,最后还有可能要在开头补上一位。那么我们反过来想,如果链尾是高位,那么进行加1运算就方便多了,直接就可以边遍历边进行运算处理,那么我们可以做的就是先把链表翻转一下,然后现在就是链尾是高位了,我们进行加1处理运算结束后,再把链表翻转回来即可,参见代码如下:
解法一:
class Solution { public: ListNode* plusOne(ListNode* head) { if (!head) return head; ListNode *rev_head = reverse(head), *cur = rev_head, *pre = cur; int carry = 1; while (cur) { pre = cur; int t = cur->val + carry; cur->val = t % 10; carry = t / 10; if (carry == 0) break; cur = cur->next; } if (carry) pre->next = new ListNode(1); return reverse(rev_head); } ListNode* reverse(ListNode *head) { if (!head) return head; ListNode *dummy = new ListNode(-1), *cur = head; dummy->next = head; while (cur->next) { ListNode *t = cur->next; cur->next = t->next; t->next = dummy->next; dummy->next = t; } return dummy->next; } };
我们也可以通过递归来实现,这样我们就不用翻转链表了,通过递归一层一层的调用,最先处理的是链尾元素,我们将其加1,然后看是否有进位,返回进位,然后回溯到表头,加完进位,如果发现又差生了新的进位,那么我们在最开头加上一个新节点即可,参见代码如下:
解法二:
class Solution { public: ListNode* plusOne(ListNode* head) { if (!head) return head; int carry = helper(head); if (carry == 1) { ListNode *res = new ListNode(1); res->next = head; return res; } return head; } int helper(ListNode *node) { if (!node) return 1; int carry = helper(node->next); int sum = node->val + carry; node->val = sum % 10; return sum / 10; } };
下面这种方法比较巧妙了,思路是遍历链表,找到第一个不为9的数字,如果找不这样的数字,说明所有数字均为9,那么在表头新建一个值为0的新节点,进行加1处理,然后把右边所有的数字都置为0即可。举例来说:
比如1->2->3,那么第一个不为9的数字为3,对3进行加1,变成4,右边没有节点了,所以不做处理,返回1->2->4。
再比如说8->9->9,找第一个不为9的数字为8,进行加1处理变成了9,然后把后面的数字都置0,得到结果9->0->0。
再来看9->9->9的情况,找不到不为9的数字,那么再前面新建一个值为0的节点,进行加1处理变成了1,把后面的数字都置0,得到1->0->0->0。
解法三:
class Solution { public: ListNode* plusOne(ListNode* head) { ListNode *cur = head, *right = NULL; while (cur) { if (cur->val != 9) right = cur; cur = cur->next; } if (!right) { right = new ListNode(0); right->next = head; head = right; } ++right->val; cur = right->next; while (cur) { cur->val = 0; cur = cur->next; } return head; } };
最后这种解法是解法二的迭代写法,我们用到栈,利用栈的先进后出机制,就可以实现从后往前的处理节点,参见代码如下:
解法四:
class Solution { public: ListNode* plusOne(ListNode* head) { stack<ListNode*> s; ListNode *cur = head; while (cur) { s.push(cur); cur = cur->next; } int carry = 1; while (!s.empty() && carry) { ListNode *t = s.top(); s.pop(); int sum = t->val + carry; t->val = sum % 10; carry = sum / 10; } if (carry) { ListNode *new_head = new ListNode(1); new_head->next = head; head = new_head; } return head; } };
类似题目:
参考资料:
https://leetcode.com/discuss/111165/2-accepted-java-solution
https://leetcode.com/discuss/111205/simple-solution-use-recursion
https://leetcode.com/discuss/111157/9-lines-recursive-without-helper
https://leetcode.com/discuss/111155/java-stack-solution-with-inline-explanation
LeetCode All in One 题目讲解汇总(持续更新中...)