递归算法经典实例小结(C#实现)

 一 、递归算法简介

在数学与计算机科学中,递归是指在函数的定义中使用函数自身的方法。
  递归算法是一种直接或者间接地调用自身算法的过程。在计算机编写程序中,递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于理解。
递归算法解决问题的特点:
  (1) 递归就是在过程或函数里调用自身。
  (2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。
  (3) 递归算法解题通常显得很简洁,但递归算法解题的运行效率较低。所以一般不提倡用递归算法设计程序。
  (4) 在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。所以一般不提倡用递归算法设计程序。在实际编程中尤其要注意栈溢出问题。

  借助递归方法,我们可以把一个相对复杂的问题转化为一个与原问题相似的规模较小的问题来求解,递归方法只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。但在带来便捷的同时,也会有一些缺点,也即:通常用递归方法的运行效率不高。

 二 、Fibonacci数列和阶乘

1、 Fibonacci数列

提到递归,我们可能会想到的一个实例便是斐波那契数列。斐波那契数列就是如下的数列:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …,总之,就是第N(N > 2)个数等于第(N - 1)个数和(N - 2)个数的和。用递归算法实现如下:

 public static int Fibonacci(int n)
      {
         if (n < 0) return -1;
         if (n == 0) return 0;
         if (n == 1) return 1;
         return Fibonacci(n - 1) + Fibonacci(n - 2);
      }

2、阶乘 

还有就是求一个数的阶乘,也会用到递归,这个比较简单,直接给出实现代码,如图:

 三 、汉诺塔问题

汉诺塔是根据一个传说形成的数学问题:

        汉诺塔示意图(图片来自网络)

有三根杆子A,B,C。A杆上有N个(N>1)穿孔圆盘,盘的尺寸由下到上依次变小。要求按下列规则将所有圆盘移至C杆:
  1、每次只能移动一个圆盘;
  2、大盘不能叠在小盘上面。
  提示:可将圆盘临时置于B杆,也可将从A杆移出的圆盘重新移回A杆,但都必须遵循上述两条规则。
  问:如何移?最少要移动多少次?

下面是汉诺塔的递归求解实现(C#代码):

public static void hannoi(int n, string from, string buffer, string to)
      {
         if (n == 1)
         {
            Console.WriteLine("Move disk " + n + " from " + from + " to " + to);
         }
         else
         {
            hannoi(n - 1, from, to, buffer);
            Console.WriteLine("Move disk " + n + " from " + from + " to " + to);
            hannoi(n - 1, buffer, from, to);
         }
      }

其运行结果如图(大家可以跟上面的gif图片对比一下):

 四 、排列组合

1、输出任意个数字母、数字的全排列

  对于一个长度为n的串或者n个字符(数字、节点)组成的字符串数组,它的全排列共有A(n, n)=n!种。这个问题也是一个递归的问题。如1,2,3,全排列可得到:{123,132,213,231,312,321}。

用递归算法实现代码如下:

public static void Permutation(string[] nums, int m, int n)
      {
         string t;
         if (m < n - 1)
         {
            Permutation(nums, m + 1, n);
            for (int i = m + 1; i < n; i++)
            {
               //可抽取Swap方法
               t = nums[m];
               nums[m] = nums[i];
               nums[i] = t;

               Permutation(nums, m + 1, n);

               //可抽取Swap方法
               t = nums[m];
               nums[m] = nums[i];
               nums[i] = t;
            }
         }
         else
         {for (int j = 0; j < nums.Length; j++)
            {
               Console.Write(nums[j]);
            }
            Console.WriteLine();
         }
      }

调用代码如下:

static void Main(string[] args)
      {
         Nums = new string[] { "a", "b", "c" };
         Permutation(Nums, 0, Nums.Length);
         Console.ReadKey();
      }

这里传入一个string数组,abc三个字母来测试,输出如下图:

2、将全排列结果保存到链表中

  有时候,我们需要将全排列的结果保存,然后做其他的处理,我们可以将结果保存到一个链表中。我们定义如下类作为链表的节点,代码如下:

   public class Node
   {
      public string value { get; set; }
      public Node nextNode { get; set; }

      public Node(string value)
      {
         this.value = value;
         this.nextNode = null;
      }
   }

此时声明全局变量,如下:

public static List<Node> NodeList = new List<Node>();

这个时候,我们修改Permutation方法,如下:

  public static void Permutation(string[] nums, int m, int n)
      {
         string t;
         if (m < n - 1)
         {
            Permutation(nums, m + 1, n);
            for (int i = m + 1; i < n; i++)
            {
               //可抽取Swap方法
               t = nums[m];
               nums[m] = nums[i];
               nums[i] = t;

               Permutation(nums, m + 1, n);

               //可抽取Swap方法
               t = nums[m];
               nums[m] = nums[i];
               nums[i] = t;
            }
         }
         else
         {
            Node root = null;
            Node currentNode;
            for (int j = 0; j < nums.Length; j++)
            {
               currentNode = new Node(nums[j]);
               currentNode.nextNode = root;
               root = currentNode;
            }
            NodeList.Add(root);
         }
      }

这样,我们执行了Permutation方法后,就将结果保存到链表中了。用的时候,我们只要遍历NodeList就可以了。如图:

递归算法就先说到这里了。谈到算法,就必需提数据结构,看来真的要“学到老了”~~

作者:雲霏霏

QQ交流群:243633526

博客地址:http://www.cnblogs.com/yunfeifei/

声明:本博客原创文字只代表本人工作中在某一时间内总结的观点或结论,与本人所在单位没有直接利益关系。非商业,未授权,贴子请以现状保留,转载时必须保留此段声明,且在文章页面明显位置给出原文连接。

如果大家感觉我的博文对大家有帮助,请推荐支持一把,给我写作的动力。

时间: 2024-12-17 17:04:02

递归算法经典实例小结(C#实现)的相关文章

iptables经典实例

Q:一局域网192.168.1.0/24,有web和ftp服务器192.168.1.10.192.168.1.11,网关linux,内网eth0,IP为192.168.1.1,外网eth1,IP为a.b.c.d,怎样作NAT能使内外网都能访问公司的服务器? A:# web# 用DNAT作端口映射iptables -t nat -A PREROUTING -d a.b.c.d -p tcp --dport 80 -j DNAT --to 192.168.1.10# 用SNAT作源地址转换(关键),

php之复制文件——php经典实例

php之复制文件--php经典实例 <?php function dirCopy($dir1,$dir2){ //判断是否目录存在 if(!file_exists($dir2) || !is_dir($dir2)){ //不是文件或目录 就创建 mkdir($dir2); } //打开 $dd=opendir($dir1); //遍历 while(false !== ($f=readdir($dd))){ //过滤 if($f=="." || $f==".."

JavaScript 实现的checkbox经典实例分享

JavaScript 实现的checkbox经典实例分享 本文主要给大家分享的是JavaScript实现checkbox多项选择的经典代码,非常的简单实用,有需要的小伙伴可以参考下 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 5

《C#并发编程经典实例》笔记

1.前言 2.开宗明义 3.开发原则和要点 (1)并发编程概述 (2)异步编程基础 (3)并行开发的基础 (4)测试技巧 (5)集合 (6)函数式OOP (7)同步 1.前言 最近趁着项目的一段平稳期研读了不少书籍,其中<C#并发编程经典实例>给我的印象还是比较深刻的.当然,这可能是由于近段日子看的书大多嘴炮大于实际,如<Head First设计模式><Cracking the coding interview>等,所以陡然见到一本打着"实例"旗号的

《PHP经典实例(第2版)》

PHP经典实例(第2版)能够为您节省宝贵的Web开发时间.有了这些针对真实问题的解决方案放在手边,大多数编程难题都会迎刃而解.<PHP经典实例(第2版)>将PHP的特性与经典实例丛书的独特形式组合到一起,足以帮您成功地构建跨浏览器的Web应用程序.在这个修订版中,您可以更加方便地找到各种编程问题的解决方案,<PHP经典实例(第2版)>中内容涵盖了:表单处理:Session管理:数据库交互:使用Web服务. 从初学者常见的问题到高级Web编程技术,这本包含了丰富的.具有实际应用价值的

c#初学-多线程中lock用法的经典实例

本文转载自:http://www.cnblogs.com/promise-7/articles/2354077.html 一.Lock定义     lock 关键字可以用来确保代码块完成运行,而不会被其他线程中断.它可以把一段代码定义为互斥段(critical section),互斥段在一个时刻内只允许一个线程进入执行,而其他线程必须等待.这是通过在代码块运行期间为给定对象获取互斥锁来实现的. 在多线程中,每个线程都有自己的资源,但是代码区是共享的,即每个线程都可以执行相同的函数.这可能带来的问

经典实例

综合实例 水仙花数(Narcissistic number): 也被称为超完全数字不变数(pluperfect digital invariant, PPDI).自恋数.自幂数.阿姆斯壮数或阿姆斯特朗数(Armstrong number),水仙花数是指一个 n 位数(n≥3 ),它的每个位上的数字的 n 次幂之和等于它本身(例如:1^3 + 5^3+ 3^3 = 153). using System; using System.Collections.Generic; using System.

const经典例子小结

在看这个例子之前,可以先看看:详解C和C++中的const和const和static变量的存放位置这样将会对const有非常全面的了解和认识: 下面我们将通过下面的例子看看const的一些非常不易发觉的错误: #include<iostream> using namespace std; class String { public: friend ostream& operator<<(ostream& os,const String& str); Stri

php简单文件管理器——php经典实例

<html> <head> <title>文件管理</title> <meta charset='utf-8' /> </head> <body> <?php //定义要查看的目录 $dir="/"; //先判断$_GET['a']是否已经传值 防止NOTICE错误 if(isset($_GET['a'])){ //选择判断要执行的操作 switch($_GET['a']){ case 'crea