中缀表达式转后缀表达式的方法:

1.遇到操作数:直接输出(添加到后缀表达式中)
2.栈为空时,遇到运算符,直接入栈
3.遇到左括号:将其入栈
4.遇到右括号:执行出栈操作,并将出栈的元素输出,直到弹出栈的是左括号,左括号不输出。
5.遇到其他运算符:加减乘除:弹出所有优先级大于或者等于该运算符的栈顶元素,然后将该运算符入栈
6.最终将栈中的元素依次出栈,输出。
例如
a+b*c+(d*e+f)*g ----> abc*+de*f+g*+

遇到a:直接输出:
后缀表达式:a
堆栈:空

遇到+:堆栈:空,所以+入栈
后缀表达式:a
堆栈:+
遇到b: 直接输出
后缀表达式:ab
堆栈:+
遇到*:堆栈非空,但是+的优先级不高于*,所以*入栈
后缀表达式: ab
堆栈:*+
遇到c:直接输出
后缀表达式:abc
堆栈:*+
遇到+:堆栈非空,堆栈中的*优先级大于+,输出并出栈,堆栈中的+优先级等于+,输出并出栈,然后再将该运算符(+)入栈
后缀表达式:abc*+
堆栈:+
遇到(:直接入栈
后缀表达式:abc*+
堆栈:(+
遇到d:输出
后缀表达式:abc*+d
堆栈:(+
遇到*:堆栈非空,堆栈中的(优先级小于*,所以不出栈
后缀表达式:abc*+d
堆栈:*(+
遇到e:输出
后缀表达式:abc*+de
堆栈:*(+
遇到+:由于*的优先级大于+,输出并出栈,但是(的优先级低于+,所以将*出栈,+入栈
后缀表达式:abc*+de*
堆栈:+(+
遇到f:输出
后缀表达式:abc*+de*f
堆栈:+(+
遇到):执行出栈并输出元素,直到弹出左括号,所括号不输出
后缀表达式:abc*+de*f+
堆栈:+
遇到*:堆栈为空,入栈
后缀表达式: abc*+de*f+
堆栈:*+
遇到g:输出
后缀表达式:abc*+de*f+g
堆栈:*+
遇到中缀表达式结束:弹出所有的运算符并输出
后缀表达式:abc*+de*f+g*+
堆栈:空

时间: 2024-10-12 21:11:13

中缀表达式转后缀表达式的方法:的相关文章

栈的应用之中缀表达式转后缀表达式

1,中缀表达式的定义及为什么要将中缀表达式转换为后缀表达式? 中缀表达式(中缀记法) 中缀表达式是一种通用的算术或逻辑公式表示方法,操作符以中缀形式处于操作数的中间.中缀表达式是人们常用的算术表示方法. 虽然人的大脑很容易理解与分析中缀表达式,但对计算机来说中缀表达式却是很复杂的,因此计算表达式的值时,通常需要先将中缀表达式转换为前缀或后缀表达式,然后再进行求值.对计算机来说,计算前缀或后缀表达式的值要比中缀表达式简单. 比如,计算机计算后缀表达式的过程如下----后缀表达式的计算机求值: 从左

数据结构中缀表达式转后缀表达式以及后缀转中缀表达式

最近一直在看数据结构这本书,我相信,对于每个程序员来说,数据结构都尤为重要.为什么要学,可以看看这位博友的认识http://blog.csdn.NET/sdkfjksf/article/details/54380659 直入主题:将中缀表达式转为后缀表达式 以及将后缀表达式转为前缀表达式的实现. 关于后缀转中缀,中缀转后缀的理论介绍,请先阅读其互转的理论知识,或者我转发的这篇文章,这里不再累赘,最好参考<数据结构与算法描述Java语言版>,接下来将会用java写. 一.首先,怎么实现中缀表达式

表达式的计算(中缀表达式转为后缀表达式或逐步计算)

算数表达式的计算,也是很基础的一个问题.花了点时间写了下. 网上很多正确代码.但没有详细说明.虽然不复杂,但是还是写详细点.只有仔细思考过.问题才会在头脑中,觉得简单. 基本有2种方法. 1)中缀表达式转为后缀表达式,是最简洁有力的方法. 2)符合人的计算思路的逐步方法,不推荐使用,只适合锻炼下逻辑能力. 一.中缀表达式转为后缀表达式,是最简洁有力的方法. //更简洁通用的算法,就是把中缀表达式转换为后缀表达式.后缀表达式:不包含括号,运算符放在两个运算对象的后面. //一,无括号的n级符号算法

中缀表达式转换为后缀表达式(1042)

描述 中缀表达式是一个通用的算术或逻辑公式表示方法,操作符是以中缀形式处于操作数的中间(例:3 + 4),中缀表达式是人们常用的算术表示方法.后缀表达式不包含括号,运算符放在两个运算对象的后面,所有的计算按运算符出现的顺序,严格从左向右进行(不再考虑运算符的优先规则,如:(2 + 1) * 3 , 即2 1 + 3 *.利用栈结构,将中缀表达式转换为后缀表达式.(测试数据元素为单个字符) input 中缀表达式 output 后缀表达式 样例输入 A+(B-C/D)*E 样例输出 ABCD/-E

中缀表达式变为后缀表达式

中缀表达式“9+(3-1)*3+10/2”转化为后缀表达式“9 3 1-3*+ 10 2/+” 中缀表达式转后缀表达式的方法:1.遇到操作数:直接输出(添加到后缀表达式中)2.栈为空时,遇到运算符,直接入栈3.遇到左括号:将其入栈4.遇到右括号:执行出栈操作,并将出栈的元素输出,直到弹出栈的是左括号,左括号不输出.5.遇到其他运算符:加减乘除:弹出所有优先级大于或者等于该运算符的栈顶元素,然后将该运算符入栈6.最终将栈中的元素依次出栈,输出. 实现9+(3-1)*3+10/2,栈=空1.9输出

中缀表达式到前缀表达式和后缀表达式

1.算法思路 转化为后缀:从左到右遍历中缀表达式,遇到操作数,输出,遇到操作符,当前操作符的优先级大于栈顶操作符优先级,进栈,否则,弹出栈顶优先级大于等于当前操作符的操作符,当前操作符进栈. 转化为前缀:从右到左遍历中缀表达式,遇到操作数,输出,遇到操作符,当前操作符的优先级大于等于栈顶操作符优先级,进栈,否则,弹出栈顶优先级大于当前操作符的操作符,当前操作符进栈.--参考该网址 以上方法需要先定义操作符优先级,当然,可以定义.但是这样会麻烦许多,那么不如用括号来进行进行限定.这样就不需要写判断

Python与数据结构[1] -&gt; 栈/Stack[1] -&gt; 中缀表达式与后缀表达式的转换和计算

中缀表达式与后缀表达式的转换和计算 目录 中缀表达式转换为后缀表达式 后缀表达式的计算 1 中缀表达式转换为后缀表达式 中缀表达式转换为后缀表达式的实现方式为: 依次获取中缀表达式的元素, 若元素为操作数(数字/字母等),则加入后缀表达式中 若元素为操作符,则压入栈中,此时对比入栈操作符与栈内元素的计算等级,等级大于或等于入栈元素的栈内操作符都将被弹出栈,加入到后缀表达式中 左括号直接入栈,优先级最高,不弹出栈内元素 右括号不入栈,而是弹出所有元素加入后缀表达式,直至遇见匹配的左括号,并弹出左括

中缀表达式与后缀表达式

计算中缀表达式"可以称得上是一个特别经典的关于栈的算法题,几乎在所有数据结构教材中都会涉及,而且很多公司面试或者笔试的时候都会把这道题作为一个考察点.可以说,这是一道必须要掌握的算法题.中缀表达式.后缀表达式等概念在这里就不赘述了,让我们直奔主题.题目:输入一个中缀表达式,计算其结果.输入的前提假设:(1)只考虑+.-.*./这四种运算符,中缀表达式中只有一种括号:():(2)输入的中缀表达式中只有整数,没有小数:(3)假定输入是合法的.很多文章或课本喜欢一步到位,直接讨论如何从中缀表达式计算结

前缀表达式、中缀表达式和后缀表达式

前缀.中缀.后缀表达式 前缀.中缀.后缀表达式是对表达式的不同记法,其区别在于运算符相对于操作数的位置不同,前缀表达式的运算符位于操作数之前,中缀和后缀同理 举例: 中缀表达式:1 + (2 + 3) × 4 - 5 前缀表达式:- + 1 × + 2 3 4 5 后缀表达式:1 2 3 + 4 × + 5 - 中缀表达式 中缀表达式是一种通用的算术或逻辑公式表示方法,操作符以中缀形式处于操作数的中间.中缀表达式是人们常用的算术表示方法. 虽然人的大脑很容易理解与分析中缀表达式,但对计算机来说中

中缀表达式转为后缀表达式

** * 中缀表达式转后缀表达式 * * 作用:将一长串计算表达式转换为计算机易于操作的字符序列,用于计算器的设计 *  * 参与转换运算符 * +-/*()^% * * * 使用StringBuilder来保存转换出的后缀表达式 * 使用栈来操作运算符 * * * 转换原则 * 1.上述字符中()没有优先级值,+-优先级值为1,/*%优先级值为2,^优先级值为3 * 2.对于一个待计算的表达式,从左向右逐个检查每个字符 * 3.遇到数字,直接append到StringBuilder * 4.遇