内核中led触发器实例【转】

本文转载自:http://blog.csdn.net/yuanlulu/article/details/6438847

============================================
作者:yuanlulu
http://blog.csdn.NET/yuanlulu

版权没有,但是转载请保留此段声明
============================================

gpio-led框架

/driver/leds/leds-gpio.c下实现了gpio-led框架。这个gpio-led框架的作用是把传入的gpio端口信息,注册成 led_classdev。

数据结构

平台设备相关的gpio led数据结构

/include/linux/leds.h

struct gpio_led {
     const char *name;          //名字
     char *default_trigger;     //默认触发器的名字
     unsigned      gpio;          //使用的gpio编号
     u8           active_low;     //如果为真则逻辑1代表低电平
};

struct gpio_led_platform_data {
     int           num_leds;                                       //gpio led的数量
     struct gpio_led *leds;                                      //指向要注册的gpio_led数组
     int          (*gpio_blink_set)(unsigned gpio,          //硬件闪烁加速设置,可以为NULL
                         unsigned long *delay_on,
                         unsigned long *delay_off);
};

如何注册gpio-led平台设备

例子如下:

#define GPIO_LED3       138                                                                                                                  
#define GPIO_LED4       139

static struct gpio_led gpio_leds[] = {
        {
                .name   = "led3",
                .default_trigger = "heartbeat",
                .gpio   = GPIO_LED3,
                .active_low = 1,
                .default_state = LEDS_GPIO_DEFSTATE_OFF,
        },
        {
                .name   = "led4",
                .gpio   = GPIO_LED4,
                .active_low = 1,
                .default_state = LEDS_GPIO_DEFSTATE_OFF,
        },
};

static struct gpio_led_platform_data gpio_led_info = {
        .leds           = gpio_leds,
        .num_leds       = ARRAY_SIZE(gpio_leds),
};

static struct platform_device leds_gpio = {
        .name   = "leds-gpio",
        .id     = -1,
        .dev    = {
                .platform_data  = &gpio_led_info,
        },
};

最后调用platform_device_register(&leds_gpio)将LED设备注册到内核中。注册之前一定要保证编号为138和139的两个端口是可用的。

成功注册之后,系统中便会出现名为led3和led4的两个led_classdev了。由于是用gpio模拟led,所以对gpio-led设置的亮度,只要不是0就是全亮(gpio只有两个状态)。

对于可能睡眠的gpio,gpio-led会借助于工作队列去设置亮度,所以不用担心会被阻塞。


default-on触发器

在/driver/leds/ledtrig-default-on.c中实现了一个名为“default-on”的触发器。这个触发器只定义了activate成员函数。它的activate函数的定义如下:

static void defon_trig_activate(struct led_classdev *led_cdev)
{
     led_set_brightness(led_cdev, LED_FULL);
}

也就是说,点亮led只能是最亮的亮度,无法调节。一旦ledl_classdev与之建立了连接,就一直处于最亮的状态,直到取消和触发器的连接。


心跳灯触发器

在/driver/leds/ledtrig-heartbeat.c中定义了一个名为"heartbeat"的心跳触发器,它可以控制所有与之建立连接的led会不停的闪烁。这个触发器用来指示内核是否已经挂掉。如果与之建立连接的led不再闪烁了,说明内核已经挂掉了。这就是“心跳”的含义,和从人的心脏是否跳动来判断人是否死亡的原理是类似的。


IDE硬盘指示灯触发器

在/driver/leds/ledtrig-ide-disk.c中定义了一个名为“ide-disk”的IDE硬盘指示灯触发器,与之建立连接的led可以指示硬盘的忙碌状态。这个触发器并没有active接口,因此不会自动闪烁。当内核中的其他模块调用以下函数的时候硬盘指示灯就会亮闪一下:

void ledtrig_ide_activity(void);

这个函数是全局函数,内核空间都可以调用。每调用一次就闪烁一下。具体怎么用,完全依赖于IDE驱动。

可以有多个led_classdev和这个触发器建立连接。每次调用ledtrig_ide_activity,所有与之连接的led都会闪烁一下。

使用ledtrig_ide_activity这个函数的模块应该包含<linux/leds.h>这个头文件。


闪烁定时触发器

在/driver/leds/ledtrig-timer.c中定义了一个名为“timer”的触发器。当某个led_classdev与之连接后,这个触发器会在/sys/class/leds/<device>/下创建两个属性文件delay_on/delay_off。用户空间往这两个文件中写入数据后,相应的led会按照设置的高低电平的时间(单位毫秒)来闪烁。如果led_classdev注册了硬件闪烁的接口led_cdev->blink_set就是用硬件控制闪烁,否则用软件定时器来控制闪烁。


led_classdev的sysfs属性文件

现在假设有一个名为“REDLED”的led_classdev被注册了,那么会出现/sys/class/leds/REDLED这个目录,这个目录下默认有brightness和trigger这两个属性文件,分别可以设置/读取led的亮度和触发器。如果和触发器“timer”建立了连接,还会有delay_on和delay_off,这两个文件用于设置/读取闪烁的熄灭和点亮的时间,单位是毫秒。


LED子系统的使用

系统定义了四个默认触发器:default_on、心跳触发器、硬盘灯触发器、闪烁触发器。除了硬盘灯触发器,其他触发器没有留从其它内核模块访问的接口。led子系统的目的主要是给用户空间控制led的。当然可以定义自己的触发器并留给其它模块访问的接口。

0
时间: 2024-10-21 14:26:21

内核中led触发器实例【转】的相关文章

linux 驱动学习笔记02--应用实例:在内核中新增驱动代码目录和子目录

下面来看一个综合实例,假设我们要在内核源代码 drivers 目录下为 ARM 体系结构新增如下用于 test driver 的树型目录:| --test  | -- cpu  | -- cpu.c  | -- test.c  | -- test_client.c  | -- test_ioctl.c  | -- test_proc.c  | -- test_queue.c在内核中增加目录和子目录,我们需为相应的新增目录创建 Makefile 和 Kconfig 文件,而新增目录的父目录中的 K

Linux内核中的GPIO系统之(3):pin controller driver代码分析--devm_kzalloc使用【转】

转自:http://www.wowotech.net/linux_kenrel/pin-controller-driver.html 一.前言 对于一个嵌入式软件工程师,我们的软件模块经常和硬件打交道,pin control subsystem也不例外,被它驱动的硬件叫做pin controller(一般ARM soc的datasheet会把pin controller的内容放入GPIO controller的章节中),主要功能包括: (1)pin multiplexing.基于ARM core

SQL触发器实例(下)

1 基本语法: 2 Create Trigger [TriggerName] 3 ON [TableName] 4 FOR [Insert][,Delete][,Update] 5 AS 6 --触发器要执行的操作语句. 7 Go 8 9 注意: 10 触发器中不允许以下 Transact-SQL 语句: 11 Alter DATABASE ,Create DATABASE,DISK INIT, 12 DISK RESIZE, Drop DATABASE, LOAD DATABASE, 13 L

触发器实例讲解

SQL触发器实例讲解(本文是来自百度文库) 备注:本人建了一个站特价汇,我想记录每个商品的点击量,然后按照点击量来牌名商品,想要提高效率,所以必须得用触发器,下面是本人在百度文库中的找到的学习资料,分享下给大家. 定义: 何为触发器?在SQL Server里面也就是对某一个表的一定的操作,触发某种条件,从而执行的一段程序.触发器是一个特殊的存储过程. 常见的触发器有三种:分别应用于Insert , Update , Delete 事件. 我为什么要使用触发器?比如,这么两个表: Create T

SQL触发器实例讲解

定义: 何为触发器?在SQL Server里面也就是对某一个表的一定的操作,触发某种条件,从而执行的一段程序.触发器是一个特殊的存储过程.       常见的触发器有三种:分别应用于Insert , Update , Delete 事件. 我为什么要使用触发器?比如,这么两个表: Create Table Student(              --学生表         StudentID int primary key,       --学号         ....        )

Linux内核中的软中断、tasklet和工作队列详解

[TOC] 本文基于Linux2.6.32内核版本. 引言 软中断.tasklet和工作队列并不是Linux内核中一直存在的机制,而是由更早版本的内核中的"下半部"(bottom half)演变而来.下半部的机制实际上包括五种,但2.6版本的内核中,下半部和任务队列的函数都消失了,只剩下了前三者. 介绍这三种下半部实现之前,有必要说一下上半部与下半部的区别. 上半部指的是中断处理程序,下半部则指的是一些虽然与中断有相关性但是可以延后执行的任务.举个例子:在网络传输中,网卡接收到数据包这

数组在PHP内核中的实现

PHP中经常使用数组,PHP的数组强大,而且速度也快,读写都可以在O(1)内完成,因为它每个元素的大小都是一致的,只要知道下标,便可以瞬间计算出其对应的元素在内存中的位置,从而直接取出或者写入.那么内核中数组是如何实现的呢? PHP大部分功能,都是通过HashTable来实现,其中就包括数组. HashTable即具有双向链表的优点,同时具有能与数据匹敌的操作性能. PHP中的定义的变量保存在一个符号表里,而这个符号表其实就是一个HashTable,它的每一个元素都是一个zval*类型的变量.不

Quartz(自动任务)中的触发器Trigger

1.Quartz中的触发器TriggerJob 包含了要执行任务的逻辑,但是 Job 对何时该执行却一无所知.这个事情留给了 Trigger.Quartz Trigger 继承了抽象的 org.quartz.Trigger 类.当前,Quartz 有三个可用的 Trigger: Java代码 ·org.quartz.SimpleTrigger ·org.quartz.CronTrigger ·org.quartz.NthIncludeDayTrigger 2.SimpleTrigger的介绍正如

大话Linux内核中锁机制之原子操作、自旋锁

转至:http://blog.sina.com.cn/s/blog_6d7fa49b01014q7p.html 很多人会问这样的问题,Linux内核中提供了各式各样的同步锁机制到底有何作用?追根到底其实是由于操作系统中存在多进程对共享资源的并发访问,从而引起了进程间的竞态.这其中包括了我们所熟知的SMP系统,多核间的相互竞争资源,单CPU之间的相互竞争,中断和进程间的相互抢占等诸多问题. 通常情况下,如图1所示,对于一段程序,我们的理想是总是美好的,希望它能够这样执行:进程1先对临界区完成操作,