「JSOI2014」矩形并

「JSOI2014」矩形并

传送门

我们首先考虑怎么算这个期望比较好。

我们不难发现每一个矩形要和 \(n - 1\) 个矩形去交,而总共又有 \(n\) 个矩形,所以我们把矩形两两之间的交全部加起来再除以 \(n(n - 1)\) 就是答案。

至于算矩形之间的交我们可以考虑把每个矩形都视为在这个矩形范围内区间加上 \(1\) ,那么我们只需要查询一个矩形内的和 - 该矩形自身的贡献就可以算出一个矩形与其他矩形的交。

所以现在相当于我们只需要实现二维的区间加/查询。

但是数据范围很大我们不可能用二维树状数组搞 不然这题就被爆艹了

所以我们考虑扫描线 + 一维树状数组来搞。

为什么不用线段树?这题线段树会不好搞,下面会讲到。

我们把纵坐标用树状数组维护起来,横坐标用扫描线代替。

对于每个矩形弄四条扫描线,两条修改两条查询。

其中一条修改在左边界加,另一条在右边界右边一个位置减。

其中一个查询在左边界左边一个位置算负的贡献,另一个在右边界算正的贡献。

那么有一个问题,为什么我们要对于左边界左边搞一条扫描线算负贡献呢?

我们考虑差分时的效果,我们对于一条加的修改扫描线,我们是把这条扫描线以左的一整块矩形区域都加了 \(1\)

那么我们如果在加之前,把一段区间的贡献减掉,实际上是减掉了若干个两个不同矩形左边界之间的值,那么我们这时如果在右边碰到一条查询正贡献的扫描线,我们会发现这两条扫描线的贡献一结合刚好就得到了一块矩形交的贡献,也就是说我们这样算就可以很方便地算矩形之间的交了。那么我们之所以不好用线段树就是因为我们这若干个两个不同矩形左边界之间的值的个数是 \(O(n)\) 的,所以不好搞。

具体细节可以手画一下图,那么我们接下来就用二维树状数组的实现技巧来搞。

还有一些小问题:运算过程中可能会爆 long long 所以我们用 long double 来存;然后就是树状数组不能以零为下标,所以我们再输入时把所有矩形的横纵坐标都往各正方向平移 \(2\) 个单位。

参考代码:

#include <algorithm>
#include <cstdio>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
using namespace std;
template < class T > inline void read(T& s) {
    s = 0; int f = 0; char c = getchar();
    while ('0' > c || c > '9') f |= c == '-', c = getchar();
    while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
    s = f ? -s : s;
}

typedef long double LL;
const int _ = 2e5 + 5, __ = 2e6 + 5;

int n, num = 0; LL ans = 0;
struct node { int opt, x, l, r, v; } t[_ << 2];
inline bool cmp(const node& a, const node& b)
{ return a.x != b.x ? a.x < b.x : (a.opt != b.opt ? a.opt < b.opt : a.v < b.v); }

struct BIT {
    LL tr[__];
    inline void update(int x, LL v) { for (rg int i = x; i < __; i += i & -i) tr[i] += v; }
    inline LL query(int x) { LL res = 0; for (rg int i = x; i >= 1; i -= i & -i) res += tr[i]; return res; }
} tr1, tr2, tr3, tr4;

inline void Update(int x, int y, int v) {
    tr1.update(y, v), tr2.update(y, x * v), tr3.update(y, y * v), tr4.update(y, (LL) x * y * v);
}

inline LL Query(int x, int y) {
    return tr1.query(y) * (x + 1) * (y + 1) - tr2.query(y) * (y + 1) - tr3.query(y) * (x + 1) + tr4.query(y);
}

int main() {
#ifndef ONLINE_JUDGE
    file("cpp");
#endif
    read(n);
    for (rg int x, y, a, b, i = 1; i <= n; ++i) {
        read(x), read(y), read(a), read(b);
        x += 2, y += 2;
        t[++num] = (node) { 0, x, y, y + b - 1, 1 };
        t[++num] = (node) { 0, x + a, y, y + b - 1, -1 };
        t[++num] = (node) { 1, x - 1, y, y + b - 1, -1 };
        t[++num] = (node) { 1, x + a - 1, y, y + b - 1, 1 };
        ans -= 1ll * a * b;
    }
    sort(t + 1, t + num + 1, cmp);
    for (rg int i = 1; i <= num; ++i) {
        if (t[i].opt == 0)
            Update(t[i].x, t[i].l, t[i].v), Update(t[i].x, t[i].r + 1, -t[i].v);
        else
            ans += t[i].v * (Query(t[i].x, t[i].r) - Query(t[i].x, t[i].l - 1));
    }
    printf("%.9Lf\n", 1.0 * ans / n / (n - 1));
    return 0;
}

原文地址:https://www.cnblogs.com/zsbzsb/p/12283494.html

时间: 2024-11-07 23:37:49

「JSOI2014」矩形并的相关文章

「JSOI2014」序列维护

「JSOI2014」序列维护 传送门 其实这题就是luogu的模板线段树2,之所以要发题解就是因为被 \(\color{black}{\text{M}} \color{red}{\text{_sea}}\) 告知了一种比较NB的 \(\text{update}\) 的方式. 我们可以把修改操作统一化,视为 \(ax + b\) 的形式,然后我们按照原来的套路来维护两个标记,分别代表 \(a\) 和 \(b\) ,那么我们的更新就可以这么写: inline void f(int p, int at

「JSOI2014」强连通图

「JSOI2014」强连通图 传送门 第一问很显然就是最大的强连通分量的大小. 对于第二问,我们先把原图进行缩点,得到 \(\text{DAG}\) 后,统计出入度为零的点的个数和出度为零的点的个数,两者取 \(\max\) 就是答案. 理性证明可以看这里 参考代码: #include <cstdio> #define rg register #define file(x) freopen(x".in", "r", stdin), freopen(x&q

「JSOI2014」学生选课

「JSOI2014」学生选课 传送门 看到这题首先可以二分. 考虑对于当前的 \(mid\) 如何 \(\text{check}\) 我们用 \(f_{i,j}\) 来表示 \(i\) 对 \(j\) 的好感度排名,那么对于两个人 \(i\),\(j\) 如果有 \(\max\{f_{i, j}, f_{j, i}\} > mid\) 那么显然这两个人是不能上同一个老师的课的. 而且每个人可以上的课只有两种,我们记为 \(a_{i, 0 / 1}\) 假设 \(i\),\(j\) 对于当前的 \

「JSOI2014」打兔子

「JSOI2014」打兔子 传送门 首先要特判 \(k \ge \lceil \frac{n}{2} \rceil\) 的情况,因为此时显然可以消灭所有的兔子,也就是再环上隔一个点打一枪. 但是我们又会发现当 \(n = 3, k = 2\) 时,这种情况也满足上述条件但是我们只能打掉两群兔子,所以选兔子最多的两个格子打. 对于剩下的情况我们可以考虑 \(\text{DP}\) . 我们可以发现一件事,就是说如果我们把环弱化成链,那么顺着打就可以包含所有状态了. 所以说我们就可以有一个性质:两个

「AHOI2014/JSOI2014」拼图

「AHOI2014/JSOI2014」拼图 传送门 看到 \(n \times m \le 10^5\) ,考虑根号分治. 对于 \(n < m\) 的情况,我们可以枚举最终矩形的上下边界 \(tp, bt\),那么我们发现最终矩形一定是由所有满足从第 \(tp\) 行到第 \(bt\) 行都是白格子的矩形顺次连接,并且两端再各自接上一个最大的前缀和一个最大的后缀构成的. 这个我们可以 \(O(m)\) 地算. 总复杂度就是 \(O(n^2m)\),也就是一个根号级别的. 对于 \(n \ge

「AHOI2014/JSOI2014」骑士游戏

「AHOI2014/JSOI2014」骑士游戏 传送门 考虑 \(\text{DP}\). 设 \(dp_i\) 表示灭种(雾)一只编号为 \(i\) 的怪物的代价. 那么转移显然是: \[dp_i = \min(K_i, S_i + \sum_{j = 1}^{R_i} dp_{v_j})\] 但是我们会发现这个东西是有后效性的... 所以我们会想要用建图然后跑一个最短路什么的来搞... 于是我们观察到上面那个 \(\text{DP}\) 式子中,\(dp_i\) 如果用后面那一项来转移,显然

「AHOI2014/JSOI2014」支线剧情

「AHOI2014/JSOI2014」支线剧情 传送门 上下界网络流. 以 \(1\) 号节点为源点 \(s\) ,新建一个汇点 \(t\),如果 \(u\) 能到 \(v\),那么连边 \(u \to v\),下界为 \(1\),上界为 \(+\infty\),费用为对应的所需时间,表示这段剧情至少看一次,且看一次代价为对应的所需时间. 又因为我们可以在任何一个节点重开一次,所以我们的每个节点 \(u\) 都连边 \(u \to t\) ,下界为 \(0\),上界为 \(+\infty\),费

Android逆向之旅---静态方式分析破解视频编辑应用「Vue」水印问题

一.故事背景 现在很多人都喜欢玩文艺,特别是我身边的UI们,拍照一分钟修图半小时.就是为了能够在朋友圈显得逼格高,不过的确是挺好看的,修图的软件太多了就不多说了,而且一般都没有水印啥的.相比较短视频有一个比较有逼格的编辑工具「Vue」个人已经用了很长时间了,拍出来的视频借助强大滤镜真的很好看,显得逼格也高,更重要的是他有我最喜欢的功能就是可以添加视频背景音乐,选择自己喜欢的音乐,然后还可以编辑这段背景音乐,反正我个人觉的这个是我最喜欢用的产品了.但是好用的东西必定有它不好的地方,因为他真的很强大

AC日记——「HNOI2017」单旋 LiBreOJ 2018

#2018. 「HNOI2017」单旋 思路: set+线段树: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 100005 #define maxtree maxn<<2 int val[maxtree],tag[maxtree],L[maxtree],R[maxtree],mid[maxtree]; int op[maxn],ki[maxn],bi[maxn],cnt,size,n,ch[maxn]