python 中 np.arange()的使用

np.arange()
函数返回一个有终点和起点的固定步长的排列,如[1,2,3,4,5],起点是1,终点是5,步长为1。
参数个数情况: np.arange()函数分为一个参数,两个参数,三个参数三种情况
1)一个参数时,参数值为终点,起点取默认值0,步长取默认值1。
2)两个参数时,第一个参数为起点,第二个参数为终点,步长取默认值1。
3)三个参数时,第一个参数为起点,第二个参数为终点,第三个参数为步长。其中步长支持小数

1 #一个参数 默认起点0,步长为1 输出:[0 1 2]
2 a = np.arange(3)
3
4 #两个参数 默认步长为1 输出[3 4 5 6 7 8]
5 a = np.arange(3,9)
6
7 #三个参数 起点为0,终点为3,步长为0.1 输出[ 0.   0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.   1.1  1.2  1.3  1.4 1.5  1.6  1.7  1.8  1.9  2.   2.1  2.2  2.3  2.4  2.5  2.6  2.7  2.8  2.9]
8 a = np.arange(0, 3, 0.1)

原文地址:https://www.cnblogs.com/smartisn/p/12357463.html

时间: 2024-10-11 01:08:23

python 中 np.arange()的使用的相关文章

python中np.multiply()、np.dot()和星号(*)三种乘法运算的区别

https://blog.csdn.net/zenghaitao0128/article/details/78715140 总结一下: 原文地址:https://www.cnblogs.com/captain-dl/p/9817144.html

python中linspace()和arange()的区别

python中linspace()和arange()的区别 今天无意间看到linspace(0,4,5)可以产生一个array([0,1,2,3,4])的数组,不知道里面的参数是什么,于是就有了这篇博文. linspace( ) linspace()通过指定开始值.终值和元素个数创建表示等差数列的一维数组,可以通过endpoint参数指定是否包含终值,默认值为True,即包含终值.看如下例子 arange( ) arange()通过指定开始值.终值(不包含终值)和步长创建表示等差数列的一维数组,

python基础 range()与np.arange()

range()返回的是range object,而np.nrange()返回的是numpy.ndarray() range尽可用于迭代,而np.nrange作用远不止于此,它是一个序列,可被当做向量使用. range()不支持步长为小数,np.arange()支持步长为小数 两者都可用于迭代 两者都有三个参数,以第一个参数为起点,第三个参数为步长,截止到第二个参数之前的不包括第二个参数的数据序列 某种意义上,和STL中由迭代器组成的区间是一样的,即左闭右开的区间.[first, last)或者不

Python 基础——range 与 np arange

range()返回的是range object,而np.nrange()返回的是numpy.adarray() 两者都是均匀地(evenly)等分区间: range尽可用于迭代,而np.arange作用远不止于此,它是一个序列,可被当做向量使用. range()不支持步长为小数,np.arange()支持步长为小数 两者都可用于迭代 两者都有三个参数,以第一个参数为起点,第三个参数为步长,截止到第二个参数之前的不包括第二个参数的数据序列 某种意义上,和STL中由迭代器组成的区间是一样的,即左闭右

如何在Python中实现这五类强大的概率分布

R编程语言已经成为统计分析中的事实标准.但在这篇文章中,我将告诉你在Python中实现统计学概念会是如此容易.我要使用Python实现一些离散和连续的概率分布.虽然我不会讨论这些分布的数学细节,但我会以链接的方式给你一些学习这些统计学概念的好资料.在讨论这些概率分布之前,我想简单说说什么是随机变量(random variable).随机变量是对一次试验结果的量化. 举个例子,一个表示抛硬币结果的随机变量可以表示成 Python 1 2 X = {1 如果正面朝上, 2 如果反面朝上} 随机变量是

python中的矩阵、多维数组----numpy

1. 引言 最近在将一个算法由matlab转成python,初学python,很多地方还不熟悉,总体感觉就是上手容易,实际上很优雅地用python还是蛮难的.目前为止,觉得就算法仿真研究而言,还是matlab用得特别舒服,可能是比较熟悉的缘故吧.matlab直接集成了很多算法工具箱,函数查询.调用.变量查询等非常方便,或许以后用久了python也会感觉很好用.与python相比,最喜欢的莫过于可以直接选中某段代码执行了,操作方便,python也可以实现,就是感觉不是很方便. 言归正传,做算法要用

python中的list和array的不同之处 2

版权声明:本文为博主非原创文章,未经博主允许可以转载. Python中的list和array的不同之处 python中的list是python的内置数据类型,list中的数据类不必相同的,而array的中的类型必须全部相同.在list中的数据类型保存的是数据的存放的地址,简单的说就是指针,并非数据,这样保存一个list就太麻烦了,例如list1=[1,2,3,'a']需要4个指针和四个数据,增加了存储和消耗cpu. numpy中封装的array有很强大的功能,里面存放的都是相同的数据类型 [py

使用python中的matplotlib进行绘图分析数据

http://blog.csdn.net/pipisorry/article/details/37742423 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图.而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中. 它的文档相当完备,并且 Gallery页面 中有上百幅缩略图,打开之后都有源程序.因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定. 在Linux下比较著名的数据图工具

python中的list和array的不同之处

原文地址:  http://blog.csdn.net/liyaohhh/article/details/51055147#reply python中的list是python的内置数据类型,list中的数据类不必相同的,而array的中的类型必须全部相同.在list中的数据类型保存的是数据的存放的地址,简单的说就是指针,并非数据,这样保存一个list就太麻烦了,例如list1=[1,2,3,'a']需要4个指针和四个数据,增加了存储和消耗cpu. numpy中封装的array有很强大的功能,里面