用Python20行代码实现人脸识别

OpenCV 是最流行的计算机视觉库,原本用 C 和 C++ 开发,现在也支持 Python。
注意:很多人学Python过程中会遇到各种烦恼问题,没有人帮答疑。为此小编建了个Python全栈免费答疑交流.裙 :一久武其而而流一思(数字的谐音)转换下可以找到了,不懂的问题有老司机解决里面还有最新Python教程项目可拿,,一起相互监督共同进步!

它使用机器学习算法在图像中搜索人的面部。对于人脸这么复杂的东西,并没有一个简单的检测能对是否存在人脸下结论,而需要成千上万的特征匹配。算法把人脸识别任务分解成数千个小任务,每个都不难处理。这些任务也被称为分类器。

对于类似于人脸的对象,你或许需要不少于 6000 个分类器,每一个都需要成功匹配(当然,有容错率),才能检测出人脸。但这有一个问题:对于人脸识别,算法从左上角开始计算一个个数据块,不停问“这是张脸吗”。每个数据块有超过 6000 个检测,加起来的计算量会达到数百万级别,计算机很可能会让你等得花儿都谢了。

OpenCV 使用 cascades 来避免这种情况。Cascade 是什么?最佳答案已经在字典里了:一条瀑布或者连续瀑布。

好比连续瀑布,OpenCV cascade 把人脸检测问题分解为好几步。对于每个数据块,它都进行一个粗略、快速的检测。若通过,会再进行一个更仔细的检测,以此不断类推。该算法有 30 到 50 个这样的阶段,或者说 cascade。

只有通过全部阶段,算法才会判断检测到人脸。这样做的好处是:大多数图形都会在头几步就产生否定反馈,算法因而不需要在它上面测试所有 6000 个特征,大大节省了时间。相对于“正常流程”耗费数个小时,这可以实时实现人脸检测。

软件环境:
python3+openCV

代码:

#encoding:utf-8
import cv2
filename = "/users/Downloads/20181102142518.png"
def detect(filename):
 # haarcascade_frontalface_default.xml存储在package安装的位置
face_cascade = cv2.CascadeClassifier("/usr/local/lib/python3.6/site-packages/cv2/data/haarcascade_frontalface_default.xml")
 img = cv2.imread(filename)
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 #传递参数是scaleFactor和minNeighbors,分别表示人脸检测过程中每次迭代时图像的压缩率以及每个人脸矩形保留近邻数目的最小值
 #检测结果返回人脸矩形数组
 #python学习资料交流分享群:852 250 729
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
 for (x, y, w, h) in faces:
 img = cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
 cv2.namedWindow("Human Face Result!")
 cv2.imshow("Human Face Result!", img)
 cv2.imwrite("images/Face.jpg", img)
 cv2.waitKey(0)
 cv2.destroyAllWindows()
detect(filename)

原图:

识别后:

以上就是使用Python的20行代码来实现人脸识别了~

注意:很多人学Python过程中会遇到各种烦恼问题,没有人帮答疑。为此小编建了个Python全栈免费答疑交流.裙 :一久武其而而流一思(数字的谐音)转换下可以找到了,不懂的问题有老司机解决里面还有最新Python教程项目可拿,,一起相互监督共同进步!
本文的文字及图片来源于网络加上自己的想法,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

原文地址:https://www.cnblogs.com/chengxuyuanaa/p/12344989.html

时间: 2024-10-29 00:30:43

用Python20行代码实现人脸识别的相关文章

40行代码的人脸识别实践【转】

转自:http://blog.csdn.net/xingchenbingbuyu/article/details/68482838?ref=myrecommend 版权声明:本文为博主原创文章,转载请联系作者取得授权. 目录(?)[+] 40行代码的人脸识别实践 40行代码的人脸识别实践 前言 一点区分 所用工具 Dlib 人脸识别 前期准备 识别流程 代码 运行结果 前言 很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了.这些

40行代码的人脸识别实践

很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了.这些人里包括曾经的我自己.其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难.今天我们就来看看如何在40行代码以内简单地实现人脸识别. 一点区分 对于大部分人来说,区分人脸检测和人脸识别完全不是问题.但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的.其实,人脸检测解决的问题是确定一张图上有木有人脸,而人脸识别

Python人脸识别最佳教材典范,40行代码搭建人脸识别系统!

Face Id是一款高端的人脸解锁软件,官方称:"在一百万张脸中识别出你的脸."百度.谷歌.腾讯等各大企业都花费数亿来鞭策人工智能的崛起,而实际的人脸识别技术是否有那么神奇? 绿帽识别器 固然是没有的!万万别再当一只井底之蛙! 互联网火速的发展,网络上大量Python程序员共享的各类资源库,人脸识别早就是各位程序员必备技能之一了,一点也不神奇. 如今只需用Python的数四十行代码就可以完成人脸定位!小编用马蓉照片做一个五官定位!固然python库使用到人工智能定位五官.让机器学习上千

40行代码的人脸识别实践——RuntimeError: Error while calling cudnnCreate

RuntimeError: Error while calling cudnnCreate(&handles[new_device_id]) in file C:\Users\Administrator\AppData\Local\Temp\pip-install-xops6emn\dlib\dlib\cuda\cudnn_dlibapi.cpp:104. code: 1, reason: CUDA Runtime API initialization failed. 我用的环境是window7

手把手教你用 1 行命令实现人脸识别

手把手教你用 1 行命令实现人脸识别 转载 2017年11月01日 00:00:00 人脸识别很难吗?-- Kangvcar 本文导航? 环境要求00%? 环境搭建03%? 实现人脸识别19%? 示例一(1 行命令实现人脸识别):19%? 示例二(识别图片中的所有人脸并显示出来):31%? 示例三(自动识别人脸特征):49%? 示例四(识别人脸鉴定是哪个人):65%? 示例五(识别人脸特征并美颜):81%转载自 | http://www.jianshu.com/p/281aa6a3823a 作者

7行Python代码的人脸识别

随着去年alphago 的震撼表现,AI 再次成为科技公司的宠儿.AI涉及的领域众多,图像识别中的人脸识别是其中一个有趣的分支.百度的BFR,Face++的开放平台,汉王,讯飞等等都提供了人脸识别的API,对于老码农而言,自己写一小段代码,来看看一张图片中有几个人,没有高大上,只是觉得好玩,而且只需要7行代码. import cv2 face_patterns = cv2.CascadeClassifier('/usr/local/opt/opencv3/share/OpenCV/haarcas

25 行 Python 代码实现人脸识别——OpenCV 技术教程

OpenCV OpenCV 是最流行的计算机视觉库,原本用 C 和 C++ 开发,现在也支持 Python. 它使用机器学习算法在图像中搜索人的面部.对于人脸这么复杂的东西,并没有一个简单的检测能对是否存在人脸下结论,而需要成千上万的特征匹配.算法把人脸识别任务分解成数千个小任务,每个都不难处理.这些任务也被称为分类器. 对于类似于人脸的对象,你或许需要不少于 6000 个分类器,每一个都需要成功匹配(当然,有容错率),才能检测出人脸.但这有一个问题:对于人脸识别,算法从左上角开始计算一个个数据

[转]7行Python代码的人脸识别

https://blog.csdn.net/wireless_com/article/details/64120516 随着去年alphago 的震撼表现,AI 再次成为科技公司的宠儿.AI涉及的领域众多,图像识别中的人脸识别是其中一个有趣的分支.百度的BFR,Face++的开放平台,汉王,讯飞等等都提供了人脸识别的API,对于老码农而言,自己写一小段代码,来看看一张图片中有几个人,没有高大上,只是觉得好玩,而且只需要7行代码. import cv2 face_patterns = cv2.Ca

王文峰《人脸识别原理与实战以MATLAB为工具》PDF及代码+《人脸识别原理及算法(沈理)》PDF+学习参考

人脸识别是当今世界科技领域攻关的高精尖技术.<人脸识别原理及算法:动态人脸识别系统研究>系统介绍了人脸识别研究领域的研究状况以及作者在人脸识别领域的研究工作和研究成果,全书共分为3个部分. <人脸识别原理与实战以MATLAB为工具>作为该技术的进阶指南,在内容上尽可能涵盖人脸识别的各技术模块,立足于作者 在中国科学院.985工程大学国家重点实验室从事视频识别与智能监控项目开发的研究积累及实战体验,分享了作者对人脸识 别算法设计的一些最直观的感触和认识. 参考学习: <人脸识别