LeetCode——48. 旋转图像

给定一个 n × n 的二维矩阵表示一个图像。

将图像顺时针旋转 90 度。

说明:

你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。

示例 1:

给定 matrix =
[
  [1,2,3],
  [4,5,6],
  [7,8,9]
],

原地旋转输入矩阵,使其变为:
[
  [7,4,1],
  [8,5,2],
  [9,6,3]
]
示例 2:

给定 matrix =
[
  [ 5, 1, 9,11],
  [ 2, 4, 8,10],
  [13, 3, 6, 7],
  [15,14,12,16]
], 

原地旋转输入矩阵,使其变为:
[
  [15,13, 2, 5],
  [14, 3, 4, 1],
  [12, 6, 8, 9],
  [16, 7,10,11]
]

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/rotate-image

旋转四个矩形

按顺时针的顺序去覆盖前面的数字,从四个顶角开始,然后往中间去遍历,每次覆盖的坐标都是同理,如下:

(i, j) <- (n-1-j, i) <- (n-1-i, n-1-j) <- (j, n-1-i)

这其实是个循环的过程,第一个位置又覆盖了第四个位置,这里i的取值范围是 [0, n/2),j的取值范围是 [i, n-1-i),至于为什么i和j是这个取值范围,为啥i不用遍历 [n/2, n),若仔细观察这些位置之间的联系,不难发现,实际上j列的范围 [i, n-1-i) 顺时针翻转 90 度,正好就是i行的 [n/2, n) 的位置,这个方法每次循环换四个数字,如下所示:

1  2  3               7  2  1            7  4  1

4  5  6      -->      4  5  6   -->    8  5  2  

7  8  9               9  8  3         9  6  3

java

class Solution {
  public void rotate(int[][] matrix) {
    int n = matrix.length;
    for (int i = 0; i < n / 2 + n % 2; i++) {
      for (int j = 0; j < n / 2; j++) {
        int[] tmp = new int[4];
        int row = i;
        int col = j;
        for (int k = 0; k < 4; k++) {
          tmp[k] = matrix[row][col];
          int x = row;
          row = col;
          col = n - 1 - x;
        }
        for (int k = 0; k < 4; k++) {
          matrix[row][col] = tmp[(k + 3) % 4];
          int x = row;
          row = col;
          col = n - 1 - x;
        }
      }
    }
  }
}

python

class Solution:
    def rotate(self, matrix):
        """
        :type matrix: List[List[int]]
        :rtype: void Do not return anything, modify matrix in-place instead.
        """
        n = len(matrix[0])
        for i in range(n // 2 + n % 2):
            for j in range(n // 2):
                tmp = [0] * 4
                row, col = i, j
                # store 4 elements in tmp
                for k in range(4):
                    tmp[k] = matrix[row][col]
                    row, col = col, n - 1 - row
                # rotate 4 elements
                for k in range(4):
                    matrix[row][col] = tmp[(k - 1) % 4]
                    row, col = col, n - 1 - row

旋转四个矩阵(改进)

c++

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        int n = matrix.size();
        for (int i = 0; i < n / 2; ++i) {
            for (int j = i; j < n - 1 - i; ++j) {
                int tmp = matrix[i][j];
                matrix[i][j] = matrix[n - 1 - j][i];
                matrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j];
                matrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i];
                matrix[j][n - 1 - i] = tmp;
            }
        }
    }
}; 

java

class Solution {
  public void rotate(int[][] matrix) {
    int n = matrix.length;
    for (int i = 0; i < (n + 1) / 2; i ++) {
      for (int j = 0; j < n / 2; j++) {
        int temp = matrix[n - 1 - j][i];
        matrix[n - 1 - j][i] = matrix[n - 1 - i][n - j - 1];
        matrix[n - 1 - i][n - j - 1] = matrix[j][n - 1 -i];
        matrix[j][n - 1 - i] = matrix[i][j];
        matrix[i][j] = temp;
      }
    }
  }
}

python

class Solution:
    def rotate(self, matrix):
        """
        :type matrix: List[List[int]]
        :rtype: void Do not return anything, modify matrix in-place instead.
        """
        n = len(matrix[0])
        for i in range(n // 2 + n % 2):
            for j in range(n // 2):
                tmp = matrix[n - 1 - j][i]
                matrix[n - 1 - j][i] = matrix[n - 1 - i][n - j - 1]
                matrix[n - 1 - i][n - j - 1] = matrix[j][n - 1 -i]
                matrix[j][n - 1 - i] = matrix[i][j]
                matrix[i][j] = tmp

对角线加上下翻转

首先以从对角线为轴翻转,然后再以x轴中线上下翻转即可得到结果,如下图所示

1  2  3       9  6  3          7  4  1

4  5  6  -->   8  5  2   -->     8  5  2  

7  8  9       7  4  1          9  6  3

c++

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        int n = matrix.size();
        for (int i = 0; i < n - 1; ++i) {
            for (int j = 0; j < n - i; ++j) {
                swap(matrix[i][j], matrix[n - 1- j][n - 1 - i]);
            }
        }
        reverse(matrix.begin(), matrix.end());
    }
};

转置加翻转

首先对原数组取其转置矩阵,然后把每行的数字翻转可得到结果,如下所示:

1  2  3       1  4  7          7  4  1

4  5  6  -->   2  5  8   -->     8  5  2  

7  8  9       3  6  9           9  6  3

c++

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        int n = matrix.size();
        for (int i = 0; i < n; ++i) {
            for (int j = i + 1; j < n; ++j) {
                swap(matrix[i][j], matrix[j][i]);
            }
            reverse(matrix[i].begin(), matrix[i].end());
        }
    }
};

java

class Solution {
  public void rotate(int[][] matrix) {
    int n = matrix.length;

    // transpose matrix
    for (int i = 0; i < n; i++) {
      for (int j = i; j < n; j++) {
        int tmp = matrix[j][i];
        matrix[j][i] = matrix[i][j];
        matrix[i][j] = tmp;
      }
    }
    // reverse each row
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < n / 2; j++) {
        int tmp = matrix[i][j];
        matrix[i][j] = matrix[i][n - j - 1];
        matrix[i][n - j - 1] = tmp;
      }
    }
  }
}

python

class Solution:
    def rotate(self, matrix):
        """
        :type matrix: List[List[int]]
        :rtype: void Do not return anything, modify matrix in-place instead.
        """
        n = len(matrix[0])
        # transpose matrix
        for i in range(n):
            for j in range(i, n):
                matrix[j][i], matrix[i][j] = matrix[i][j], matrix[j][i] 

        # reverse each row
        for i in range(n):
            matrix[i].reverse()

原文地址:https://www.cnblogs.com/wwj99/p/12344507.html

时间: 2024-11-09 03:25:32

LeetCode——48. 旋转图像的相关文章

LeetCode 48. 旋转图像(Rotate Image)

题目描述 给定一个 n × n 的二维矩阵表示一个图像. 将图像顺时针旋转 90 度. 说明: 你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵.请不要使用另一个矩阵来旋转图像. 示例 1: 给定 matrix = [ [1,2,3], [4,5,6], [7,8,9] ], 原地旋转输入矩阵,使其变为: [ [7,4,1], [8,5,2], [9,6,3] ] 示例 2: 给定 matrix = [ [ 5, 1, 9,11], [ 2, 4, 8,10], [13, 3, 6,

LeetCode:旋转图像【48】

LeetCode:旋转图像[48] 题目描述 给定一个 n × n 的二维矩阵表示一个图像. 将图像顺时针旋转 90 度. 说明: 你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵.请不要使用另一个矩阵来旋转图像. 示例 1: 给定 matrix = [ [1,2,3], [4,5,6], [7,8,9] ], 原地旋转输入矩阵,使其变为: [ [7,4,1], [8,5,2], [9,6,3] ] 示例 2: 给定 matrix = [ [ 5, 1, 9,11], [ 2, 4,

LeetCode 48. Rotate Image(旋转图像)

You are given an n x n 2D matrix representing an image. Rotate the image by 90 degrees (clockwise). Follow up:Could you do this in-place? 题目标签:Array 这道题目给了我们一个n * n的矩阵,让我们旋转图片.题目要求in-place,所以就不能用额外的空间了.一开始自己写了一个很原始的方法,结果虽然通过,但是速度太慢.只好去看看别人的方法,看完觉得,自己

Leetcode题目48.旋转图像(中等)

题目描述: 给定一个 n × n 的二维矩阵表示一个图像. 将图像顺时针旋转 90 度. 说明: 你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵.请不要使用另一个矩阵来旋转图像. 示例 1: 给定 matrix = [ [1,2,3], [4,5,6], [7,8,9] ], 原地旋转输入矩阵,使其变为: [ [7,4,1], [8,5,2], [9,6,3] ] 示例 2: 给定 matrix = [ [ 5, 1, 9,11], [ 2, 4, 8,10], [13, 3, 6,

leetCode 48.Rotate Image (旋转图像) 解题思路和方法

Rotate Image You are given an n x n 2D matrix representing an image. Rotate the image by 90 degrees (clockwise). Follow up: Could you do this in-place? 思路:其实就是旋转数组,没有什么难度,代码如下: public class Solution { public void rotate(int[][] matrix) { int[][] a =

48. 旋转图像

题目: 给定一个 n × n 的二维矩阵表示一个图像. 将图像顺时针旋转 90 度. 说明: 你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵.请不要使用另一个矩阵来旋转图像. 之前在面试题中看了zip函数. 这里直接运用,一行代码. 1 class Solution: 2 def rotate(self, matrix: List[List[int]]) -> None: 3 """ 4 Do not return anything, modify matr

Leetcode 48 Rotate Image

You are given an n x n 2D matrix representing an image. Rotate the image by 90 degrees (clockwise). Follow up:Could you do this in-place? 思路:把矩阵看成是由多个正方形一层一层包围起来的.转动的时候就是转动正方形的边,只要把边上的每个数依次替换就好,四个方向也就是进行四次替换,依次对每一层进行替换. 总层数 = matrix.length/2,第i层从第mat

LeetCode 48. Rotate Image My Submissions Question (矩阵旋转)

题目大意:给一个矩阵,将其按顺时针旋转90°. 题目分析:通法是先将矩阵转置,然后再反转每一行,或者是先反转每一列,然后再将其转置.I just want to say"It's amazing!".(forgivig my poor English!) 代码如下(代码怎么写已经不重要了!): class Solution { public: void rotate(vector<vector<int>>& matrix) { int r=matrix.

leetCode(48):Excel Sheet Column Number And Excel Sheet Column Title

Given a column title as appear in an Excel sheet, return its corresponding column number. For example: A -> 1 B -> 2 C -> 3 ... Z -> 26 AA -> 27 AB -> 28 class Solution { public: int titleToNumber(string s) { int result=0; for(int i=0;i&