如何寻找最长回文子串

回文串是面试常常遇到的问题(虽然问题本身没啥意义),本文就告诉你回文串问题的核心思想是什么。

首先,明确一下什:回文串就是正着读和反着读都一样的字符串

比如说字符串 abaabba 都是回文串,因为它们对称,反过来还是和本身一样。反之,字符串 abac 就不是回文串。

可以看到回文串的的长度可能是奇数,也可能是偶数,这就添加了回文串问题的难度,解决该类问题的核心是双指针。下面就通过一道最长回文子串的问题来具体理解一下回文串问题:

string longestPalindrome(string s) {}

一、思考

对于这个问题,我们首先应该思考的是,给一个字符串 s,如何在 s 中找到一个回文子串?

有一个很有趣的思路:既然回文串是一个正着反着读都一样的字符串,那么如果我们把 s 反转,称为 s‘,然后在 ss‘ 中寻找最长公共子串,这样应该就能找到最长回文子串。

比如说字符串 abacd,反过来是 dcaba,它的最长公共子串是 aba,也就是最长回文子串。

但是这个思路是错误的,比如说字符串 aacxycaa,反转之后是 aacyxcaa,最长公共子串是 aac,但是最长回文子串应该是 aa

虽然这个思路不正确,但是这种把问题转化为其他形式的思考方式是非常值得提倡的

下面,就来说一下正确的思路,如何使用双指针。

寻找回文串的问题核心思想是:从中间开始向两边扩散来判断回文串。对于最长回文子串,就是这个意思:

for 0 <= i < len(s):
    找到以 s[i] 为中心的回文串
    更新答案

但是呢,我们刚才也说了,回文串的长度可能是奇数也可能是偶数,如果是 abba这种情况,没有一个中心字符,上面的算法就没辙了。所以我们可以修改一下:

for 0 <= i < len(s):
    找到以 s[i] 为中心的回文串
    找到以 s[i] 和 s[i+1] 为中心的回文串
    更新答案

PS:读者可能发现这里的索引会越界,等会会处理。

二、代码实现

按照上面的思路,先要实现一个函数来寻找最长回文串,这个函数是有点技巧的:

string palindrome(string& s, int l, int r) {
    // 防止索引越界
    while (l >= 0 && r < s.size()
            && s[l] == s[r]) {
        // 向两边展开
        l--; r++;
    }
    // 返回以 s[l] 和 s[r] 为中心的最长回文串
    return s.substr(l + 1, r - l - 1);
}

为什么要传入两个指针 lr 呢?因为这样实现可以同时处理回文串长度为奇数和偶数的情况

for 0 <= i < len(s):
    # 找到以 s[i] 为中心的回文串
    palindrome(s, i, i)
    # 找到以 s[i] 和 s[i+1] 为中心的回文串
    palindrome(s, i, i + 1)
    更新答案

下面看下 longestPalindrome 的完整代码:

string longestPalindrome(string s) {
    string res;
    for (int i = 0; i < s.size(); i++) {
        // 以 s[i] 为中心的最长回文子串
        string s1 = palindrome(s, i, i);
        // 以 s[i] 和 s[i+1] 为中心的最长回文子串
        string s2 = palindrome(s, i, i + 1);
        // res = longest(res, s1, s2)
        res = res.size() > s1.size() ? res : s1;
        res = res.size() > s2.size() ? res : s2;
    }
    return res;
}

至此,这道最长回文子串的问题就解决了,时间复杂度 O(N^2),空间复杂度 O(1)。

值得一提的是,这个问题可以用动态规划方法解决,时间复杂度一样,但是空间复杂度至少要 O(N^2) 来存储 DP table。这道题是少有的动态规划非最优解法的问题。

另外,这个问题还有一个巧妙的解法,时间复杂度只需要 O(N),不过该解法比较复杂,我个人认为没必要掌握。该算法的名字叫 Manacher‘s Algorithm(马拉车算法),有兴趣的读者可以自行搜索一下。

我最近精心制作了一份电子书《labuladong的算法小抄》,分为【动态规划】【数据结构】【算法思维】【高频面试】四个章节,共 60 多篇原创文章,绝对精品!限时开放下载,在我的公众号 labuladong 后台回复关键词【pdf】即可免费下载!

欢迎关注我的公众号 labuladong,技术公众号的清流,坚持原创,致力于把问题讲清楚!

原文地址:https://www.cnblogs.com/labuladong/p/12320516.html

时间: 2024-11-09 00:29:27

如何寻找最长回文子串的相关文章

最长公共子序列|最长公共子串|最长重复子串|最长不重复子串|最长回文子串|最长递增子序列|最大子数组和

参考:http://www.ahathinking.com/archives/124.html 最长公共子序列 1.动态规划解决过程 1)描述一个最长公共子序列 如果序列比较短,可以采用蛮力法枚举出X的所有子序列,然后检查是否是Y的子序列,并记录所发现的最长子序列.如果序列比较长,这种方法需要指数级时间,不切实际. LCS的最优子结构定理:设X={x1,x2,……,xm}和Y={y1,y2,……,yn}为两个序列,并设Z={z1.z2.……,zk}为X和Y的任意一个LCS,则: (1)如果xm=

转载:LeetCode:5Longest Palindromic Substring 最长回文子串

本文转自:http://www.cnblogs.com/TenosDoIt/p/3675788.html 题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. 求字符串的最长回文子串 算法1:暴

后缀数组 - 求最长回文子串 + 模板题 --- ural 1297

1297. Palindrome Time Limit: 1.0 secondMemory Limit: 16 MB The “U.S. Robots” HQ has just received a rather alarming anonymous letter. It states that the agent from the competing «Robots Unlimited» has infiltrated into “U.S. Robotics”. «U.S. Robots» s

求最长回文子串:Manacher算法

主要学习自:http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html 问题描述:回文字符串就是左右对称的字符串,如:"abba",而最长回文子串则是字符串长度最长的回文子字符串,如"abbaca"的最长回文子串为"abba". 常规解法:显而易见采用嵌套循环的方式可以“暴力”结算出答案,其时间复杂度为O(n^2),而Manacher算法是一种更加

[LeetCode] 5. Longest Palindromic Substring 最长回文子串

Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. 最长回文子串Longest palindromic substring, 最长回文子串或最长对称因子问题是在一个字符串中查找一个最长连续子串,这个子串

[Manacher]最长回文子串

很久没有写博客了 啪啪啪 写一些东西吧 最长回文子串怎么求呢 首先我们得知道什么是子串,给你一个长长的串,里面任意连续的一段就是它的子串,当然一个字符也是子串 接着什么是回文串呢 不好描述 但是看例子很容易懂:aba 121 1221 1 然后我们有一种很显然的寻找方法 当然是枚举中点 然后尽可能的往外扩大回文串的长度 这种算法花费的时间是N(字符串长度)*Mk(可扩展长度)Mk<N 当然这样的时间并不是很让人满意 于是Manacher这个人发明了一种新算法 他是这样想的 假如我先前已经找到的回

寻找最长回文字符串

首先讲解一种简单容易理解的暴力解法:复杂度为O(n^2) 解题思路是:第一,定义一个pStr指向字符串str,再定义一个p指向pStr,q指向pStr+1: 第二,找出一个字符*p与其下一个字符*q相同位置,比如oo,num++,index = p:然后比较这两个相同字符*p,*q两边的字符是否相等,如果相等再向两边扩展p--,q++(p>str&&q!='\0').如果p指向首部,即p=str,则调出while循环,再比较一次if(*p == *q),num++,index = q

《算法竞赛入门经典》3.3最长回文子串

1 //例题3-4 2 /* 3 * 输入一个字符串,求出其中最长的回文子串.子串的含义是:在原串中连续出现的字符串片段. 4 *回文的含义是:正看着和倒看着相同,如abba和yyxyy.在判断时,应该忽略所有标点符号和空格 5 *且忽略大小写,但输出应保持原样(在回文串的首部和尾部不要输出多余字符).输入字符长度不超过5000 6 *且占据单独的一行.应该输出最长回文串,如果有多个,输出起始位置最靠左的. 7 *样例输入:Confuciuss say:Madam,I'm Adam. 8 *样例

Manacher算法----最长回文子串

题目描述 给定一个字符串,求它的最长回文子串的长度. 分析与解法 最容易想到的办法是枚举所有的子串,分别判断其是否为回文.这个思路初看起来是正确的,但却做了很多无用功,如果一个长的子串包含另一个短一些的子串,那么对子串的回文判断其实是不需要的.同时,奇数和偶数长度还要分别考虑. Manacher算法可以解决上述问题,并在O(n)时间复杂度内求出结果.下面我们来看一下Manacher算法. 首先,为了处理奇偶的问题,在每个字符的两边都插入一个特殊的符号,这样所有的奇数或偶数长度都转换为奇数长度.比