目标检测算法综述

1. 传统的目标检测框架,主要包括三个步骤:
(1)利用不同尺寸的滑动窗口框住图中的某一部分作为候选区域;
(2)提取候选区域相关的视觉特征。比如人脸检测常用的Harr特征;行人检测和普通目标检测常用的HOG特征等;
(3)利用分类器进行识别,比如常用的SVM模型;

2. 目标检测领域的深度学习方法主要分为两类:

  • 一阶段(One Stage ):不需要产生候选框,直接将目标框定位的问题转化为回归(Regression)问题处理(Process)。常见的算法有YOLO、SSD等等。
  • 两阶段(Two Stages):首先由算法(algorithm)生成一系列作为样本的候选框,再通过卷积神经网络进行样本(Sample)分类。常见的算法有R-CNN、Fast R-CNN、Faster R-CNN等等。
  • 基于候选区域(Region Proposal)的,如R-CNN、SPP-net、Fast R-CNN、Faster R-CNN、R-FCN;
  • 基于端到端(End-to-End),无需候选区域(Region Proposal)的,如YOLO、SSD。

  对于上述两种方式,基于候选区域(Region Proposal)的方法在检测准确率和定位精度上占优,基于端到端(End-to-End)的算法速度占优。相对于R-CNN系列的“看两眼”(候选框提取和分类),YOLO只需要“看一眼”。总之,目前来说,基于候选区域(Region Proposal)的方法依然占据上风,但端到端的方法速度上优势明显,至于后续的发展让我们拭目以待。

参考:https://www.cnblogs.com/xiaoboge/p/10544336.html

原文地址:https://www.cnblogs.com/zhaopengpeng/p/12268437.html

时间: 2024-10-07 22:56:06

目标检测算法综述的相关文章

第二十八节、基于深度学习的目标检测算法的综述

在前面几节中,我们已经介绍了什么是目标检测,以及如何进行目标检测,还提及了滑动窗口,bounding box.以及IOU,非极大值抑制等概念. 这里将会综述一下当前目标检测的研究成果,并对几个经典的目标检测算法进行概述,本文内容来自基于深度学习的目标检测,在后面几节里,会具体讲解每一种方法. 在深度度学习的目标检测算法兴起之前,传统的目标检测算法是怎样的呢? 传统的目标检测一般使用滑动窗口的框架,主要包括三个步骤: 利用不同尺寸的滑动窗口框住图中的某一部分作为候选区域: 提取候选区域相关的视觉特

4. 基于深度学习的目标检测算法的综述(转)

4. 基于深度学习的目标检测算法的综述(转) 原文链接:https://www.cnblogs.com/zyly/p/9250195.html 目录 一 相关研究 1.选择性搜索(Selective Search) 2.OverFeat 二.基于区域提名的方法 1.R-CNN 2.SPP-Net 3.Fast R-CNN 4.Faster R-CNN 5.R-FCN 三 端对端的方法 1.YOLO 2.SSD 四 总结 在前面几节中,我们已经介绍了什么是目标检测,以及如何进行目标检测,还提及了滑

深度学习 目标检测算法 SSD 论文简介

深度学习 目标检测算法 SSD 论文简介 一.论文简介: ECCV-2016 Paper:https://arxiv.org/pdf/1512.02325v5.pdf  Slides:http://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf 二.代码训练测试: https://github.com/weiliu89/caffe/tree/ssd  一.论文算法大致流程: 1.类似"anchor"机制: 如上所示:在 featur

[转载]基于模糊Choquet积分的目标检测算法

前言: 原文地址为:http://www.cnblogs.com/pangblog/p/3303956.html 正文: 本文根据论文:Fuzzy Integral for Moving Object Detection-FUZZ-IEEE_2008的内容及自己的理解而成,如果想了解更多细节,请参考原文.在背景建模中,我们对于像素的分类总是采用非此即彼的方式来分,即该像素要么是背景要么是前景.然而,由于噪声.光照变化以及阴影等特殊情况导致像素会存在错误,即像素存在一定的不确定性.为了处理这种不确

DPM目标检测算法(毕业论文节选)

各位看客,如发现错误(应该还有蛮多--),望不吝指教.训练部分没有写 以前写的部分内容: DPM(Deformable Parts Model)--原理(一) DPM(Defomable Parts Model) 源码分析-检测(二) DPM(Defomable Parts Model) 源码分析-训练(三) 推荐阅读: DPM: http://blog.csdn.net/masibuaa/article/category/2267527 HOG: HOG(毕业论文节选) DPM目标检测算法 D

目标检测之hough forest---霍夫森林(Hough Forest)目标检测算法

 Hough Forest目标检测一种比较时兴的目标检测算法,Juergen Gall在2009的CVPR上提出. Hough Forest听上去像hough变换+Random Forest的结合体,其实,不完全是这样的.它更像是decision forest和regression forest的结合体再加上generalized hough transform:森林中每棵树即不是分类树也不是回归树,而是其中的每个节点可能为分类节点或者回归节点.分类节点最小化class-label uncert

目标检测算法SSD在window环境下GPU配置训练自己的数据集

由于最近想试一下牛掰的目标检测算法SSD.于是乎,自己做了几千张数据(实际只有几百张,利用数据扩充算法比如镜像,噪声,切割,旋转等扩充到了几千张,其实还是很不够).于是在网上找了相关的介绍,自己处理数据转化为VOC数据集的格式,在转化为XML格式等等.具体方法可以参见以下几个博客.具体是window还是Linux请自行对号入座. Linux:http://blog.sina.com.cn/s/blog_4a1853330102x7yd.html window:http://blog.csdn.n

无人超市目标检测算法的选型

经过测试得出以下结论:1.传统的目标检测算法主要有以下几种:(1) 基于Boosting框架:Haar/LBP/积分HOG/ACF feature+Adaboost (2) 基于SVM:HOG+SVM or DPM等 (3) 模版匹配(特殊情况下可以用到)人工特征和LBP,HAAR特征级联分类器容易出现找不到目标的情况,但是优点是响应速度快,硬件投入低,训练模型快速因为有时候找不到目标所以舍弃.2.现在采用深度学习的方法,主要尝试了以下几种方法(1)cnn fast-cnn faster-cnn

第二十八节,目标检测算法之R-CNN算法详解

Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. R-CNN的全称是Region-CNN,它可以说是第一个成功将深度学习应用到目标检测上的算法.后面要讲到的