linux heads分析(转)

http://blog.chinaunix.net/uid-20451980-id-1945241.html

Linux kernel分析(一)
注:本文为Stephen Du原创,转载请注明

一直想把自己自毕业以来学习Linux kernel的点点滴滴进行一次整理,却总是因工作繁忙而一再推迟。最近把kernel知识进行了一次全面的回顾,因此下定决心将这件事情做好。

本文只针对ARM平台的源码分析并且并不包括bootloader的部分,也就是说只分析kernel内的“标准”代码。闲话少说,正式开始。

bootloader完成基本的硬件初始化后,就开始执行arch/arm/kernel/head.S下的汇编代码,紧接着执行arch/arm/kernel/head-common.S,最后跳转到init/main.c中的start_kernel()函数。现在从arch/arm/kernel/head.S入手,看看这里做了什么。

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  以下开始的代码都运行于物理地址空间中并未进入虚地址空间,因为MMU还没有开启!(对于逻辑地址,线性地址,虚地址,物理地址,实模式,保护模式等基本概念此处不会解释)

宏                 位置                           默认值          说明  
KERNEL_RAM_VADDR  arch/arm/kernel/head.S    
       
0xc0008000      kernel在RAM中的的虚拟地址 
KERNEL_RAM_PADDR arch/arm/kernel/head.S PHYS_OFFSET+0x00008000     kernel在RAM中的的物理地址 
PAGE_OFFSET      include/asm-arm/memeory.h  
       
0xc0000000      内核空间的起始虚拟地址 
TEXT_OFFSET      arch/arm/Makefile    
             
0x00008000      内核相对于存储空间的偏移 
TEXTADDR         arch/arm/kernel/head.S
            
0xc0008000      kernel的起始虚拟地址 
PHYS_OFFSET      include/asm-arm/arch-xxx/memory.h   平台相关        RAM的起始物理地址
KERNEL_START                                        KERNEL_RAM_VADDR Kernel被copy进RAM的地址(非XIP的情况如此,但是XIP时候KERNEL_START!=KERNEL_RAM_VADDR)

PHYS_OFFSET是RAM的物理地址,内核规定必须是2M对齐的

25 #if (PHYS_OFFSET & 0x001fffff)

26 #error "PHYS_OFFSET must be at an even 2MiB
boundary!"

27 #endif

28 KERNEL_RAM_VADDR定义了经过映射后的内核镜像的virtual地址(link地址),PAGE_OFFSET=3G边界

KERNEL_RAM_PADDR定义了内核镜像的物理地址。

问题:内核镜像为什么一定要映射到高3G的地址上呢?不映射不行吗?

答案:多进程要求多个虚拟地址空间并存,而物理上内存空间只有一个,因此必须将各个进程的虚空间进行动态映射到同一个物理空间上;另一个方面,不同机器环境下,物理内存大小不尽相同(可能太大也可能太小了),必须通过映射屏蔽这些差异以便让进程看不到差异的使用4G(32bit环境)的地址空间!内核属于一个特殊的“进程”(并不是一个进程那么简单),也必须工作于虚地址空间之下(CPU处于实模式下只能寻址有限的物理地址空间),因此需要将物理地址映射到3G(这个3G并不是一定的,可以通过内核编译选项更改,但是通常都是3G)边界的虚地址之上运行,这样基地址+偏移量的寻址思想便可以无缝的使用了!此处答案为本人个人根据现有知识的理解,可能存在错误!

29 #define KERNEL_RAM_VADDR      
 (PAGE_OFFSET + TEXT_OFFSET)

30 #define KERNEL_RAM_PADDR      
 (PHYS_OFFSET + TEXT_OFFSET)

经过映射后的内核镜像的地址必须是1M对齐的!

40 #if (KERNEL_RAM_VADDR & 0xffff) != 0x8000
//The virtual addr of the kernel need to be 1M align

41 #error KERNEL_RAM_VADDR must start at 0xXXXX8000

42 #endif
    定义了临时page table的存放地址(虚地址)0xC000000 - 0x4000

43 swapper_pg_dir

44         .globl
 swapper_pg_dir

45         .equ  
 swapper_pg_dir, KERNEL_RAM_VADDR - 0x4000 @The temp page table base addr
is here(0xC000000 - 0x4000)

46 该macro用于获取临时page table的物理地址

47         .macro  pgtbl,
rd

48         ldr    
\rd, =(KERNEL_RAM_PADDR - 0x4000)

49         .endm

50 XIP是片内执行的意思;针对某些存在NOR flash扩展的系统内核镜像是直接存放在XOR flash上运行的,因此镜像的地址应该是NOR flash的地址而不是RAM的地址。

51 #ifdef CONFIG_XIP_KERNEL

52 #define KERNEL_START    XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR)

53 #define KERNEL_END    
 _edata_loc

54 #else

55 #define KERNEL_START  
 KERNEL_RAM_VADDR

56 #define KERNEL_END      _end

57 #endif

第一阶段:
    这一段是bootloader进入kernel的一个入口。在进入该函数之前,整个硬件系统至少需要初始化以下的状态:
    1)MMU必须关闭(page
table还没有建立,不能进行虚地址转实地址,CPU工作与相对寻址状态,CP指向的是物理地址)
    2)D-cache是CPU的数据cache必须处于关闭状态;I-cache是命令cache可以开也可以关闭!
    3)R0由bootloader必须清零;R1由bootloader设置为machine的number(这个是什么,可以查看内核的ARM boot文档arch/arm/tools/mach-types);R2放置atag指针,bootloader在初始化过程中会将kernel必需的参数搜集并放入该atag list中并将这个地址传递给kernel以便在进入kernel后使用

77         .section
".text.head", "ax"

78         .type   stext,
%function
    这里定义了由bootloader进入内核的入口stext!关键的部分来了,哈哈哈

79 ENTRY(stext)
    由于要做一些底层的初始化,因此先将CPU切入SVC模式并关闭中断(由于中断向量表以及异常向量表并未建立,CPU无法响应中断请求!)

80         msr    
cpsr_c, #PSR_F_BIT | PSR_I_BIT | SVC_MODE @ ensure svc mode

81              
                     
            @ and irqs disabled
    通过协处理器获取处理器ID

82         mrc    
p15, 0, r9, c0, c0              @ get
processor id
    此处需要确定CPU的类型才能进行相应的初始化操作

83         bl    
 __lookup_processor_type         @ r5=procinfo
r9=cpuid

84         movs  
 r10, r5                  
      @ invalid processor (r5=0)?

85         beq    
__error_p                    
  @ yes, error ‘p‘
    根据内核中预置的信息,判断当前的board是哪个来确定存储器扩展以及扩展的外设有哪些

86         bl    
 __lookup_machine_type           @ r5=machinfo

87         movs  
 r8, r5                  
       @ invalid machine (r5=0)?

88         beq    
__error_a                    
  @ yes, error ‘a‘
    此处会去校验atag的内容

89         bl    
 __vet_atags
    这里非常重要!由于CPU要开启MMU进入虚地址执行模式,因此必须先建立一个临时的page table(临时的意思是将来会这个table将会被抛弃,重新建立)

90         bl    
 __create_page_tables 
    这一句十分重要也值得去细细推敲,看似没有什么用途,但是在后边开启MMU后进入虚地址空间(link地址)的部分至关重要!因为,该伪指令会将__switch_data对应的虚地址加载给r13寄存器,后面会通过将r13加载进pc(指令计数器)达到进入虚地址模式的目的!也就是说此前的所有代码工作于PIC(position independent code),并没有使用link地址,理解这一点很重要!
 99         ldr     r13, __switch_data
             @ address to jump to
__mmap_switched(This is not PIC addr that means:it is a absolute addr in the
kernel image, another words virtual addr) after the MMU switched on and return
here which start execute code in the virtual space!!!!!!!!!!!!!!!!!!!!!!!!!!

100              
                     
            @ mmu has been enabled
    page table已经建立准备开启MMU

101         adr     lr,
__enable_mmu                @ return
(PIC) address
    执行清除CPU cache以及TLB(table
lookup buffer是MMU的高速缓冲区,提供高速虚实地址转换,原理是将以前的转换结果放在这个buffer当中,如果请求的地址在这里则不做全局搜索)的工作

102         add     pc,
r10, #PROCINFO_INITFUNC     @Call the __cpu_flush to clear
I-cache-D-cache TLB related registered as PROCINFO_INITFUNC

103              
                     
            @After __enable_mmu start to exwcute
__switch_data by mov pc, r13 in __enable_mmu

104 
   多CPU的系统暂时不分析!呵呵

105 #if defined(CONFIG_SMP)

106         .type  
secondary_startup, #function

107 ENTRY(secondary_startup)

108         /*

109          * Common entry
point for secondary CPUs.

110          *

111          * Ensure that we‘re
in SVC mode, and IRQs are disabled.  Lookup

112          * the processor
type - there is no need to check the machine type

113          * as it has already
been validated by the primary processor.

114          */

115         msr     cpsr_c,
#PSR_F_BIT | PSR_I_BIT | SVC_MODE

116         mrc     p15, 0,
r9, c0, c0              @ get processor id

117         bl    
 __lookup_processor_type

118         movs    r10, r5
                     
  @ invalid processor?

119         moveq   r0, #‘p‘
                     
 @ yes, error ‘p‘

120         beq     __error

121

122         /*

123          * Use the page
tables supplied from  __cpu_up.

124          */

125         adr     r4,
__secondary_data

126         ldmia   r4, {r5, r7,
r13}               @ address to jump to
after

127         sub     r4, r4,
r5                      @
mmu has been enabled

128         ldr     r4,
[r7, r4]                    @
get secondary_data.pgdir

129         adr     lr,
__enable_mmu                @ return
address

130         add     pc,
r10, #PROCINFO_INITFUNC     @ initialise processor

131              
                     
            @ (return control reg)

132

133         /*

134          * r6  =
&secondary_data

135          */

136 ENTRY(__secondary_switched)

137         ldr     sp,
[r7, #4]                    @
get secondary_data.stack

138         mov     fp, #0

139         b      
secondary_start_kernel

140

141         .type  
__secondary_data, %object

142 __secondary_data:

143         .long   .

144         .long  
secondary_data

145         .long  
__secondary_switched

146 #endif /* defined(CONFIG_SMP) */

147

开启MMU的函数

155         .type  
__enable_mmu, %function

156 __enable_mmu:

157 #ifdef CONFIG_ALIGNMENT_TRAP

158         orr     r0, r0,
#CR_A

159 #else

160         bic     r0, r0,
#CR_A

161 #endif

162 #ifdef CONFIG_CPU_DCACHE_DISABLE

163         bic     r0, r0,
#CR_C

164 #endif

165 #ifdef CONFIG_CPU_BPREDICT_DISABLE

166         bic     r0, r0,
#CR_Z

167 #endif

168 #ifdef CONFIG_CPU_ICACHE_DISABLE

169         bic     r0, r0,
#CR_I

170 #endif
    此处MMU相关的设置,本人没有细究,有情趣的可以研究研究

171         mov     r5,
#(domain_val(DOMAIN_USER, DOMAIN_MANAGER) | \

172              
        domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) | \

173              
        domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) | \

174              
        domain_val(DOMAIN_IO, DOMAIN_CLIENT))

175         mcr     p15, 0,
r5, c3, c0, 0           @ load domain access register

176         mcr     p15, 0,
r4, c2, c0, 0           @ load page table pointer

177         b      
__turn_mmu_on

这里真正的开启了MMU并从PIC进入virual地址空间运行!!
190         .align  5

191         .type  
__turn_mmu_on, %function

192 __turn_mmu_on:
    执行延时操作(原因在于协处理器相关操作不能立即生效,需要几个ARM的指令周期后才能工作!)

193         mov     r0, r0
                     
   @delay for the reason of the ARM execute flow!

194         mcr     p15, 0,
r0, c1, c0, 0           @ write control reg

195         mrc     p15, 0,
r3, c0, c0, 0           @ read id reg

196         mov     r3, r3
                     
   @delay!!!!!for the reason of ARM execute flow!

197         mov     r3, r3
                     
   @delay!!!!!
   该行代码之前pc方的是物理地址,此后pc存放的将是虚地址,也就是phys+0xc000000

198         mov     pc, r13
                     
  @jump to the __switch_data; r3 contains the virtual addr of
__switch_data, because the MMU is on, so this     virtual addr can be
translated into the physical addr automatically!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    以后的代码在虚地址空间运行!!!!!!!!!!!!!!!!!!!

该函数在PHYS_OFFSET+0x08000-0x4000处创建临时page table

215         .type  
__create_page_tables, %function

216 __create_page_tables:

217         pgtbl   r4  
                     
     @ Get page table base address r4=0x4000 16K addr

清零内存

222         mov     r0, r4
 @Back up base page table addr

223         mov     r3, #0

224         add     r6, r0,
#0x4000 @ r6 contains the end of page table addr

225 /***Clear the 16K page table memory to 0*/

226 1:      str     r3, [r0], #4

227         str     r3,
[r0], #4

228         str     r3,
[r0], #4

229         str     r3,
[r0], #4

230         teq     r0, r6

231         bne     1b

232 /**End*/
   将内核镜像中的MMU flag数值取出,准备设置page table

233         ldr     r7,
[r10, #PROCINFO_MM_MMUFLAGS] @ get the mm_mmuflags

此处,为当前物理地址起的1M空间建立映射(1M源于ARM的MMU支持2级page,第一级支持1M的page或者指向2级的entry;由于内核镜像的特殊性,它的segments被放在一级page table的1M page内而不是存放在后面将要讲述的4kpage内)

该语句比较重要,pc此处指向物理地址,右移20次则得到当前物理地址的1M计数(再左移20位就是segment的地址!,相当于清零低20bit)

241         mov     r6, pc,
lsr #20                 @ start of
kernel section r6=pc>>20 contains section addr and the virt addr == phys
addr
   根据上句得出的段计数左移20位算出段地址,并将将低20bit设置成MMU的flag,得到一个map entry!

242         orr     r3, r7,
r6, lsl #20             @ flags + kernel base
   将map entry数值写回page table相应的位置,以便MMU查表转换的时候使用!这里有一点值得注意:这里,映射前后的地址空间实际上上一样的,因为pc的虚地址跟物理地址重合!r6(可以理解r6的数值为page table的index)之所以左移2bit是由于每个page table的entry占4个字节,然后page entry addr=r4(基地址)+index*4

243         str     r3,
[r4, r6, lsl #2]            @ identity
mapping;Reason see r6=pc>>20

244              
                     
            @ r6 contains the index offset in the
page table so multiple 4 get the address of the L1 entry

245         /**Here we need an id to
decide which page entry to write the r3, so we apply multi 4 to get the id*/

这里为内核镜像建立映射(映射的本质是设置page
table entry,让MMU知道如何将虚地址转换成物理地址);非XIP的时候KERNEL_RAM_VADDR=KERNEL_START
251         add
    r0, r4,  #(KERNEL_START & 0xff000000) >> 18
//Should firstly right shift 20bits and for the reason of page entry is 4 bytes
size so left s    hift 2 then is 18;What is 0xff000000?while not
0xfff00000? Answer is in the next code 0x0f00000+0xff000000=0xfff0000!

252         str     r3,
[r0, #(KERNEL_START & 0x00f00000) >> 18]! //Attention!r3‘s content
remains as the kernel section map, so

253              
                     
                     
      //The two virtual addr corresponds to the same phys addr!

254         ldr     r6,
=(KERNEL_END - 1)

255         add     r0, r0,
#4      //Point to the next L1 entry!

256         add     r6, r4,
r6, lsr #18 //Caculate the end of L1 entry

257 1:      cmp     r0, r6
 //Reaching the end of entry?

258         add     r3, r3,
#1 << 20 //add the segment addr for 1

259         strls   r3, [r0], #4

260         bls     1b

261

262 #ifdef CONFIG_XIP_KERNEL

263         /*

264          * Map some ram to
cover our .data and .bss areas.

265          */

266         orr     r3, r7,
#(KERNEL_RAM_PADDR & 0xff000000)

267         .if    
(KERNEL_RAM_PADDR & 0x00f00000)

268         orr     r3, r3,
#(KERNEL_RAM_PADDR & 0x00f00000)

269         .endif

270         add     r0, r4,
 #(KERNEL_RAM_VADDR & 0xff000000) >> 18

271         str     r3,
[r0, #(KERNEL_RAM_VADDR & 0x00f00000) >> 18]!

272         ldr     r6,
=(_end - 1)

273         add     r0, r0,
#4

274         add     r6, r4,
r6, lsr #18

275 1:      cmp     r0, r6

276         add     r3, r3,
#1 << 20

277         strls   r3, [r0], #4

278         bls     1b

279 #endif
   由于最低1M存放了bootloader传递给kernel的一些参数,因此需要为它建立map这样开启MMU后就可以访问这些参数了。

284         add     r0, r4,
#PAGE_OFFSET >> 18 @The base virtual addr!

285         orr     r6, r7,
#(PHYS_OFFSET & 0xff000000)

286         .if    
(PHYS_OFFSET & 0x00f00000)

287         orr     r6, r6,
#(PHYS_OFFSET & 0x00f00000)

288         .endif

289         str     r6,
[r0]
  建好页表返回

332         mov     pc, lr

333         .ltorg

334

335 #include "head-common.S"

-------------------------------------------------------

如下为 head.S内容,我做了简单注释

/*
head.s是linux解压后的运行的第一个程序。
为保持通用性,与机器相关的代码都应有bootloader完成。
此程序主要完成页表初始化,开启MMU。

 以下开始的代码都运行于物理地址空间中并未进入虚地址空间,因为MMU还没有开启!

     宏                 位置                           默认值          说明
KERNEL_RAM_VADDR  arch/arm/kernel/head.S             0xc0008000      kernel在RAM中的的虚拟地址
KERNEL_RAM_PADDR arch/arm/kernel/head.S PHYS_OFFSET+0x00008000     kernel在RAM中的的物理地址
PAGE_OFFSET      include/asm-arm/memeory.h           0xc0000000      内核空间的起始虚拟地址
TEXT_OFFSET      arch/arm/Makefile                   0x00008000      内核相对于存储空间的偏移
TEXTADDR         arch/arm/kernel/head.S              0xc0008000      kernel的起始虚拟地址
PHYS_OFFSET      include/asm-arm/arch-xxx/memory.h   平台相关        RAM的起始物理地址
KERNEL_START                                        KERNEL_RAM_VADDR Kernel被copy进RAM的地址(非XIP的情况如此,
                                                                     但是XIP时候KERNEL_START!=KERNEL_RAM_VADDR)
*/

/*
 *  linux/arch/arm/kernel/head.S
 *
 *  Copyright (C) 1994-2002 Russell King
 *  Copyright (c) 2003 ARM Limited
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  Kernel startup code for all 32-bit CPUs
 */
#include <linux/linkage.h>
#include <linux/init.h>

#include <asm/assembler.h>
#include <asm/domain.h>
#include <asm/ptrace.h>
#include <asm/asm-offsets.h>
#include <asm/memory.h>
#include <asm/thread_info.h>
#include <asm/system.h>
#include <asm/pgtable.h>

#ifdef CONFIG_DEBUG_LL
#include <mach/debug-macro.S>
#endif

/*
swapper_pg_dir是初始(第一个)页表的虚拟地址,放在KERNEL_RAM_VADDR下的16K空间。
KERNEL_RAM_VADDR必须0x8000对齐,kernel在ram中的虚拟地址,一般为0xc0008000。
*/
/*
 * swapper_pg_dir is the virtual address of the initial page table.
 * We place the page tables 16K below KERNEL_RAM_VADDR.  Therefore, we must
 * make sure that KERNEL_RAM_VADDR is correctly set.  Currently, we expect
 * the least significant 16 bits to be 0x8000, but we could probably
 * relax this restriction to KERNEL_RAM_VADDR >= PAGE_OFFSET + 0x4000.
 */
#define KERNEL_RAM_VADDR    (PAGE_OFFSET + TEXT_OFFSET)
#if (KERNEL_RAM_VADDR & 0xffff) != 0x8000
#error KERNEL_RAM_VADDR must start at 0xXXXX8000
#endif

#define PG_DIR_SIZE    0x4000
#define PMD_ORDER    2

    .globl    swapper_pg_dir
    .equ    swapper_pg_dir, KERNEL_RAM_VADDR - PG_DIR_SIZE

    .macro    pgtbl, rd, phys
    add    \rd, \phys, #TEXT_OFFSET - PG_DIR_SIZE
    .endm

#ifdef CONFIG_XIP_KERNEL
#define KERNEL_START    XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR)
#define KERNEL_END    _edata_loc
#else
#define KERNEL_START    KERNEL_RAM_VADDR
#define KERNEL_END    _end
#endif

/*
内核运行条件:关闭MMU,关闭D-cache,I-cache无关,
r0 = 0
r1 = machine nr
r2 = atags or dtb指针
R2放置atag指针,bootloader在初始化过程中会将kernel必需的参数搜集并放入该atag list中
并将这个地址传递给kernel以便在进入kernel后使用
*/
/*
 * Kernel startup entry point.
 * ---------------------------
 *
 * This is normally called from the decompressor code.  The requirements
 * are: MMU = off, D-cache = off, I-cache = dont care, r0 = 0,
 * r1 = machine nr, r2 = atags or dtb pointer.
 *
 * This code is mostly position independent, so if you link the kernel at
 * 0xc0008000, you call this at __pa(0xc0008000).
 *
 * See linux/arch/arm/tools/mach-types for the complete list of machine
 * numbers for r1.
 *
 * We‘re trying to keep crap to a minimum; DO NOT add any machine specific
 * crap here - that‘s what the boot loader (or in extreme, well justified
 * circumstances, zImage) is for.
 */
    .arm

    __HEAD
ENTRY(stext)

 THUMB(    adr    r9, BSYM(1f)    )    @ Kernel is always entered in ARM.
 THUMB(    bx    r9        )    @ If this is a Thumb-2 kernel,
 THUMB(    .thumb            )    @ switch to Thumb now.
 THUMB(1:            )

    setmode    PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9 @ ensure svc mode
                        @ and irqs disabled
    mrc    p15, 0, r9, c0, c0        @ get processor id
    bl    __lookup_processor_type        @ r5=procinfo r9=cpuid
    movs    r10, r5                @ invalid processor (r5=0)?
 THUMB( it    eq )        @ force fixup-able long branch encoding
    beq    __error_p            @ yes, error ‘p‘

#ifndef CONFIG_XIP_KERNEL
    adr    r3, 2f
    ldmia    r3, {r4, r8}
    sub    r4, r3, r4            @ (PHYS_OFFSET - PAGE_OFFSET)
    add    r8, r8, r4            @ PHYS_OFFSET
#else
    ldr    r8, =PHYS_OFFSET        @ always constant in this case
#endif

    /*
     * r1 = machine no, r2 = atags or dtb,
     * r8 = phys_offset, r9 = cpuid, r10 = procinfo
     */
    bl    __vet_atags
#ifdef CONFIG_SMP_ON_UP
    bl    __fixup_smp
#endif
#ifdef CONFIG_ARM_PATCH_PHYS_VIRT
    bl    __fixup_pv_table
#endif
    bl    __create_page_tables

    /*
     * The following calls CPU specific code in a position independent
     * manner.  See arch/arm/mm/proc-*.S for details.  r10 = base of
     * xxx_proc_info structure selected by __lookup_processor_type
     * above.  On return, the CPU will be ready for the MMU to be
     * turned on, and r0 will hold the CPU control register value.
     */
    ldr    r13, =__mmap_switched        @ address to jump to after
                        @ mmu has been enabled
    adr    lr, BSYM(1f)            @ return (PIC) address
    mov    r8, r4                @ set TTBR1 to swapper_pg_dir
 ARM(    add    pc, r10, #PROCINFO_INITFUNC    )
 THUMB(    add    r12, r10, #PROCINFO_INITFUNC    )
 THUMB(    mov    pc, r12                )
1:    b    __enable_mmu
ENDPROC(stext)
    .ltorg
#ifndef CONFIG_XIP_KERNEL
2:    .long    .
    .long    PAGE_OFFSET
#endif

/************************************************************************/

/*
建立初始页表。仅仅建立能使内核运行的最小量页,映射在内核区。
*/
/*
 * Setup the initial page tables.  We only setup the barest
 * amount which are required to get the kernel running, which
 * generally means mapping in the kernel code.
 *
 * r8 = phys_offset, r9 = cpuid, r10 = procinfo
 *
 * Returns:
 *  r0, r3, r5-r7 corrupted
 *  r4 = physical page table address
 */
__create_page_tables:
    pgtbl    r4, r8                @ page table address

    /*
     * Clear the swapper page table
     */
    mov    r0, r4
    mov    r3, #0
    add    r6, r0, #PG_DIR_SIZE
1:    str    r3, [r0], #4
    str    r3, [r0], #4
    str    r3, [r0], #4
    str    r3, [r0], #4
    teq    r0, r6
    bne    1b

    ldr    r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags

    /*
     * Create identity mapping to cater for __enable_mmu.
     * This identity mapping will be removed by paging_init().
     */
    adr    r0, __enable_mmu_loc
    ldmia    r0, {r3, r5, r6}
    sub    r0, r0, r3            @ virt->phys offset
    add    r5, r5, r0            @ phys __enable_mmu
    add    r6, r6, r0            @ phys __enable_mmu_end
    mov    r5, r5, lsr #SECTION_SHIFT
    mov    r6, r6, lsr #SECTION_SHIFT

1:    orr    r3, r7, r5, lsl #SECTION_SHIFT    @ flags + kernel base
    str    r3, [r4, r5, lsl #PMD_ORDER]    @ identity mapping
    cmp    r5, r6
    addlo    r5, r5, #1            @ next section
    blo    1b

    /*
     * Now setup the pagetables for our kernel direct
     * mapped region.
     */
    mov    r3, pc
    mov    r3, r3, lsr #SECTION_SHIFT
    orr    r3, r7, r3, lsl #SECTION_SHIFT
    add    r0, r4,  #(KERNEL_START & 0xff000000) >> (SECTION_SHIFT - PMD_ORDER)
    str    r3, [r0, #((KERNEL_START & 0x00f00000) >> SECTION_SHIFT) << PMD_ORDER]!
    ldr    r6, =(KERNEL_END - 1)
    add    r0, r0, #1 << PMD_ORDER
    add    r6, r4, r6, lsr #(SECTION_SHIFT - PMD_ORDER)
1:    cmp    r0, r6
    add    r3, r3, #1 << SECTION_SHIFT
    strls    r3, [r0], #1 << PMD_ORDER
    bls    1b

#ifdef CONFIG_XIP_KERNEL
    /*
     * Map some ram to cover our .data and .bss areas.
     */
    add    r3, r8, #TEXT_OFFSET
    orr    r3, r3, r7
    add    r0, r4,  #(KERNEL_RAM_VADDR & 0xff000000) >> (SECTION_SHIFT - PMD_ORDER)
    str    r3, [r0, #(KERNEL_RAM_VADDR & 0x00f00000) >> (SECTION_SHIFT - PMD_ORDER)]!
    ldr    r6, =(_end - 1)
    add    r0, r0, #4
    add    r6, r4, r6, lsr #(SECTION_SHIFT - PMD_ORDER)
1:    cmp    r0, r6
    add    r3, r3, #1 << 20
    strls    r3, [r0], #4
    bls    1b
#endif

/*
boot 参数地址在r2,或者ram的开始1MB空间(加入参数地址未指定)
*/
    /*
     * Then map boot params address in r2 or
     * the first 1MB of ram if boot params address is not specified.
     */
    mov    r0, r2, lsr #SECTION_SHIFT
    movs    r0, r0, lsl #SECTION_SHIFT
    moveq    r0, r8
    sub    r3, r0, r8
    add    r3, r3, #PAGE_OFFSET
    add    r3, r4, r3, lsr #(SECTION_SHIFT - PMD_ORDER)
    orr    r6, r7, r0
    str    r6, [r3]

#ifdef CONFIG_DEBUG_LL
#ifndef CONFIG_DEBUG_ICEDCC
    /*
     * Map in IO space for serial debugging.
     * This allows debug messages to be output
     * via a serial console before paging_init.
     */
    addruart r7, r3, r0

    mov    r3, r3, lsr #SECTION_SHIFT
    mov    r3, r3, lsl #PMD_ORDER

    add    r0, r4, r3
    rsb    r3, r3, #0x4000            @ PTRS_PER_PGD*sizeof(long)
    cmp    r3, #0x0800            @ limit to 512MB
    movhi    r3, #0x0800
    add    r6, r0, r3
    mov    r3, r7, lsr #SECTION_SHIFT
    ldr    r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags
    orr    r3, r7, r3, lsl #SECTION_SHIFT
1:    str    r3, [r0], #4
    add    r3, r3, #1 << SECTION_SHIFT
    cmp    r0, r6
    blo    1b

#else /* CONFIG_DEBUG_ICEDCC */
    /* we don‘t need any serial debugging mappings for ICEDCC */
    ldr    r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags
#endif /* !CONFIG_DEBUG_ICEDCC */

#if defined(CONFIG_ARCH_NETWINDER) || defined(CONFIG_ARCH_CATS)
    /*
     * If we‘re using the NetWinder or CATS, we also need to map
     * in the 16550-type serial port for the debug messages
     */
    add    r0, r4, #0xff000000 >> (SECTION_SHIFT - PMD_ORDER)
    orr    r3, r7, #0x7c000000
    str    r3, [r0]
#endif
#ifdef CONFIG_ARCH_RPC
    /*
     * Map in screen at 0x02000000 & SCREEN2_BASE
     * Similar reasons here - for debug.  This is
     * only for Acorn RiscPC architectures.
     */
    add    r0, r4, #0x02000000 >> (SECTION_SHIFT - PMD_ORDER)
    orr    r3, r7, #0x02000000
    str    r3, [r0]
    add    r0, r4, #0xd8000000 >> (SECTION_SHIFT - PMD_ORDER)
    str    r3, [r0]
#endif
#endif
    mov    pc, lr
ENDPROC(__create_page_tables)
    .ltorg
    .align
__enable_mmu_loc:
    .long    .
    .long    __enable_mmu
    .long    __enable_mmu_end

#if defined(CONFIG_SMP)
    __CPUINIT
ENTRY(secondary_startup)
    /*
     * Common entry point for secondary CPUs.
     *
     * Ensure that we‘re in SVC mode, and IRQs are disabled.  Lookup
     * the processor type - there is no need to check the machine type
     * as it has already been validated by the primary processor.
     */
    setmode    PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9
    mrc    p15, 0, r9, c0, c0        @ get processor id
    bl    __lookup_processor_type
    movs    r10, r5                @ invalid processor?
    moveq    r0, #‘p‘            @ yes, error ‘p‘
 THUMB( it    eq )        @ force fixup-able long branch encoding
    beq    __error_p

    /*
     * Use the page tables supplied from  __cpu_up.
     */
    adr    r4, __secondary_data
    ldmia    r4, {r5, r7, r12}        @ address to jump to after
    sub    lr, r4, r5            @ mmu has been enabled
    ldr    r4, [r7, lr]            @ get secondary_data.pgdir
    add    r7, r7, #4
    ldr    r8, [r7, lr]            @ get secondary_data.swapper_pg_dir
    adr    lr, BSYM(__enable_mmu)        @ return address
    mov    r13, r12            @ __secondary_switched address
 ARM(    add    pc, r10, #PROCINFO_INITFUNC    ) @ initialise processor
                          @ (return control reg)
 THUMB(    add    r12, r10, #PROCINFO_INITFUNC    )
 THUMB(    mov    pc, r12                )
ENDPROC(secondary_startup)

    /*
     * r6  = &secondary_data
     */
ENTRY(__secondary_switched)
    ldr    sp, [r7, #4]            @ get secondary_data.stack
    mov    fp, #0
    b    secondary_start_kernel
ENDPROC(__secondary_switched)

    .align

    .type    __secondary_data, %object
__secondary_data:
    .long    .
    .long    secondary_data
    .long    __secondary_switched
#endif /* defined(CONFIG_SMP) */

/*
 * Setup common bits before finally enabling the MMU.  Essentially
 * this is just loading the page table pointer and domain access
 * registers.
 *
 *  r0  = cp#15 control register
 *  r1  = machine ID
 *  r2  = atags or dtb pointer
 *  r4  = page table pointer
 *  r9  = processor ID
 *  r13 = *virtual* address to jump to upon completion
 */
__enable_mmu:
#if defined(CONFIG_ALIGNMENT_TRAP) && __LINUX_ARM_ARCH__ < 6
    orr    r0, r0, #CR_A
#else
    bic    r0, r0, #CR_A
#endif
#ifdef CONFIG_CPU_DCACHE_DISABLE
    bic    r0, r0, #CR_C
#endif
#ifdef CONFIG_CPU_BPREDICT_DISABLE
    bic    r0, r0, #CR_Z
#endif
#ifdef CONFIG_CPU_ICACHE_DISABLE
    bic    r0, r0, #CR_I
#endif
    mov    r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER) |               domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) |               domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) |               domain_val(DOMAIN_IO, DOMAIN_CLIENT))
    mcr    p15, 0, r5, c3, c0, 0        @ load domain access register
    mcr    p15, 0, r4, c2, c0, 0        @ load page table pointer
    b    __turn_mmu_on
ENDPROC(__enable_mmu)

/*
 * Enable the MMU.  This completely changes the structure of the visible
 * memory space.  You will not be able to trace execution through this.
 * If you have an enquiry about this, *please* check the linux-arm-kernel
 * mailing list archives BEFORE sending another post to the list.
 *
 *  r0  = cp#15 control register
 *  r1  = machine ID
 *  r2  = atags or dtb pointer
 *  r9  = processor ID
 *  r13 = *virtual* address to jump to upon completion
 *
 * other registers depend on the function called upon completion
 */
    .align    5
__turn_mmu_on:
    mov    r0, r0
    mcr    p15, 0, r0, c1, c0, 0        @ write control reg
    mrc    p15, 0, r3, c0, c0, 0        @ read id reg
    mov    r3, r3
    mov    r3, r13
    mov    pc, r3
__enable_mmu_end:
ENDPROC(__turn_mmu_on)

#ifdef CONFIG_SMP_ON_UP
    __INIT
__fixup_smp:
    and    r3, r9, #0x000f0000    @ architecture version
    teq    r3, #0x000f0000        @ CPU ID supported?
    bne    __fixup_smp_on_up    @ no, assume UP

    bic    r3, r9, #0x00ff0000
    bic    r3, r3, #0x0000000f    @ mask 0xff00fff0
    mov    r4, #0x41000000
    orr    r4, r4, #0x0000b000
    orr    r4, r4, #0x00000020    @ val 0x4100b020
    teq    r3, r4            @ ARM 11MPCore?
    moveq    pc, lr            @ yes, assume SMP

    mrc    p15, 0, r0, c0, c0, 5    @ read MPIDR
    and    r0, r0, #0xc0000000    @ multiprocessing extensions and
    teq    r0, #0x80000000        @ not part of a uniprocessor system?
    moveq    pc, lr            @ yes, assume SMP

__fixup_smp_on_up:
    adr    r0, 1f
    ldmia    r0, {r3 - r5}
    sub    r3, r0, r3
    add    r4, r4, r3
    add    r5, r5, r3
    b    __do_fixup_smp_on_up
ENDPROC(__fixup_smp)

    .align
1:    .word    .
    .word    __smpalt_begin
    .word    __smpalt_end

    .pushsection .data
    .globl    smp_on_up
smp_on_up:
    ALT_SMP(.long    1)
    ALT_UP(.long    0)
    .popsection
#endif

    .text
__do_fixup_smp_on_up:
    cmp    r4, r5
    movhs    pc, lr
    ldmia    r4!, {r0, r6}
 ARM(    str    r6, [r0, r3]    )
 THUMB(    add    r0, r0, r3    )
#ifdef __ARMEB__
 THUMB(    mov    r6, r6, ror #16    )    @ Convert word order for big-endian.
#endif
 THUMB(    strh    r6, [r0], #2    )    @ For Thumb-2, store as two halfwords
 THUMB(    mov    r6, r6, lsr #16    )    @ to be robust against misaligned r3.
 THUMB(    strh    r6, [r0]    )
    b    __do_fixup_smp_on_up
ENDPROC(__do_fixup_smp_on_up)

ENTRY(fixup_smp)
    stmfd    sp!, {r4 - r6, lr}
    mov    r4, r0
    add    r5, r0, r1
    mov    r3, #0
    bl    __do_fixup_smp_on_up
    ldmfd    sp!, {r4 - r6, pc}
ENDPROC(fixup_smp)

#ifdef CONFIG_ARM_PATCH_PHYS_VIRT

/* __fixup_pv_table - patch the stub instructions with the delta between
 * PHYS_OFFSET and PAGE_OFFSET, which is assumed to be 16MiB aligned and
 * can be expressed by an immediate shifter operand. The stub instruction
 * has a form of ‘(add|sub) rd, rn, #imm‘.
 */
    __HEAD
__fixup_pv_table:
    adr    r0, 1f
    ldmia    r0, {r3-r5, r7}
    sub    r3, r0, r3    @ PHYS_OFFSET - PAGE_OFFSET
    add    r4, r4, r3    @ adjust table start address
    add    r5, r5, r3    @ adjust table end address
    add    r7, r7, r3    @ adjust __pv_phys_offset address
    str    r8, [r7]    @ save computed PHYS_OFFSET to __pv_phys_offset
    mov    r6, r3, lsr #24    @ constant for add/sub instructions
    teq    r3, r6, lsl #24 @ must be 16MiB aligned
THUMB(    it    ne        @ cross section branch )
    bne    __error
    str    r6, [r7, #4]    @ save to __pv_offset
    b    __fixup_a_pv_table
ENDPROC(__fixup_pv_table)

    .align
1:    .long    .
    .long    __pv_table_begin
    .long    __pv_table_end
2:    .long    __pv_phys_offset

    .text
__fixup_a_pv_table:
#ifdef CONFIG_THUMB2_KERNEL
    lsls    r6, #24
    beq    2f
    clz    r7, r6
    lsr    r6, #24
    lsl    r6, r7
    bic    r6, #0x0080
    lsrs    r7, #1
    orrcs    r6, #0x0080
    orr    r6, r6, r7, lsl #12
    orr    r6, #0x4000
    b    2f
1:    add     r7, r3
    ldrh    ip, [r7, #2]
    and    ip, 0x8f00
    orr    ip, r6    @ mask in offset bits 31-24
    strh    ip, [r7, #2]
2:    cmp    r4, r5
    ldrcc    r7, [r4], #4    @ use branch for delay slot
    bcc    1b
    bx    lr
#else
    b    2f
1:    ldr    ip, [r7, r3]
    bic    ip, ip, #0x000000ff
    orr    ip, ip, r6    @ mask in offset bits 31-24
    str    ip, [r7, r3]
2:    cmp    r4, r5
    ldrcc    r7, [r4], #4    @ use branch for delay slot
    bcc    1b
    mov    pc, lr
#endif
ENDPROC(__fixup_a_pv_table)

ENTRY(fixup_pv_table)
    stmfd    sp!, {r4 - r7, lr}
    ldr    r2, 2f            @ get address of __pv_phys_offset
    mov    r3, #0            @ no offset
    mov    r4, r0            @ r0 = table start
    add    r5, r0, r1        @ r1 = table size
    ldr    r6, [r2, #4]        @ get __pv_offset
    bl    __fixup_a_pv_table
    ldmfd    sp!, {r4 - r7, pc}
ENDPROC(fixup_pv_table)

    .align
2:    .long    __pv_phys_offset

    .data
    .globl    __pv_phys_offset
    .type    __pv_phys_offset, %object
__pv_phys_offset:
    .long    0
    .size    __pv_phys_offset, . - __pv_phys_offset
__pv_offset:
    .long    0
#endif

#include "head-common.S"
时间: 2024-10-14 21:00:40

linux heads分析(转)的相关文章

自学linux指令分析-ls

自学linux指令分析-ls 1·命令格式 ls [option] [directory-list] ls [参数][目录名] 2·命令参数    -a, –all 列出目录下的所有文件,包括以 . 开头的隐含文件. -A, –almost-all 列出除了 . 及 .. 以外的任何项目 –author 印出每个文件的作者 -b, –escape 把文件名中不可输出的字符用反斜杠加字符编号的形式列出. –block-size=大小块以指定<大小>的字节为单位 -B, –ignore-backu

自学linux指令分析-head

自学linux指令分析-head 1·命令格式 head [参数][文件] 2·命令参数 -q                     隐藏文件名 -v                     显示文件名 -c<字节>           显示字节数 -n<行数>           显示的行数 3.命令功能 头部  显示文件头部-n, 行数,默认显示头部10行 4.命令范列 [[email protected] ~]# head -5 ett.txt 12345

自学linux指令分析-vi

自学linux指令分析-vi 1·命令格式 vi  file-list vi [文件名] 2.命令功能 vi编辑器是所有Unix及Linux系统下标准的编辑器,它的强大不逊色于任何最新的文本编辑器. 3.使用方式 执行 vi oldboy.txt进入 vi 编辑器(默认是命令模式),点击 a 或者 i 进入编辑模式, 敲入内容I am studying linux,然后按键盘上的esc键退出编辑模式(进入命令模式), 最后敲 ;wq保存并退出,wq解释 write quit. 如果只是查看,可以

《linux 内核分析》 第4周

王一 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.linux 系统的状态 Linux在x86平台下支持0内核态和3用户态.在内核态32位平台能访问0x00000000以上的空间,而用户态只能访问小于0xc0000000一下的地址空间 (此处的地址空间为逻辑地址).当用户态切换到内核态的时候主要方式为中断. 1.当int128调用时,系统会自动的两个状态下的cs:eip,ss:es

《linux 内核分析》 第二周 实验

王一 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 本次课的核心是通过中断机制完成进程的调度 ,在本次课程中__init my_start_kernel作为入口函数,定义0号进程的tPCB结构体,通过复制来制造其他进程的tPCB数据结构,中断时间函数被 my_timer_handler周期性的调用来修改my_need_sched 的值,而0号进程一直在检测my_need_sched 的

Linux内核分析8

周子轩 原创作品转载请注明出处  <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 实验目的: 使用gdb跟踪分析一个schedule()函数,理解Linux系统中进程调度的时机. 实验过程: 登陆实验楼虚拟机http://www.shiyanlou.com/courses/195 打开shell终端,执行以下命令: cd LinuxKernel rm -rf menu git clone https://git

《Linux内核分析》课程第七周学习总结

姓名:何伟钦 学号:20135223 ( *原创作品转载请注明出处*) ( 学习课程:<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-100002900 学习内容:Linux内核如何装载和启动一个可执行程序 理解编译链接的过程和ELF可执行文件格式: 编程使用exec*库函数加载一个可执行文件,动态链接分为可执行程序装载时动态链接和运行时动态链接,编程练习动态链接库的这两种使用方式: 使用gdb跟踪分析一个execve系统调用内核处

LINUX内核分析第七周学习总结——可执行程序的装载

LINUX内核分析第六周学习总结——进程的描述和进程的创建 张忻(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.知识概要 (一)预处理.编译.链接和目标文件的格式 1.可执行程序是怎么得来的 2.目标文件的格式ELF 3.静态链接的ELF可执行文件和进程的地址空间 (二)可执行程序.共享库和动态加载 1.装载可执行程序之前的工作 2.装载时动态链接和运行时动态链接应用举例 (三)

《Linux内核分析》第六周学习小结

进程的描述和进程的创建 一.进程的描述 进程描述符task_struct数据结构: (1)操作系统的三大功能: 进程管理.内存管理.文件系统 (2)进程的作用: 将信号.进程间通信.内存管理和文件系统联系起来 (3)进程控制块PCB——task_struct数据结构 提供了内核需要了解的信息 (4)task_struct结构庞大,有400多行代码.包含了进程状态.内核堆栈等相关信息的定义. (5)Linux的进程和操作系统原理中描述的进程状态有所不同,实际内核中,就绪和运行状态都用TASK_RU