C语言编程程序的内存如何布局

重点关注以下内容:

  C语言程序在内存中各个段的组成

  C语言程序连接过程中的特性和常见错误

  C语言程序的运行方式

  一:C语言程序的存储区域

  由C语言代码(文本文件)形成可执行程序(二进制文件),需要经过编译-汇编-连接三个阶段。编译过程把C语言文本文件生成汇编程序,汇编过程把汇编程序形成二进制机器代码,连接过程则将各个源文件生成的二进制机器代码文件组合成一个文件。

  C语言编写的程序经过编译-连接后,将形成一个统一文件,它由几个部分组成。在程序运行时又会产生其他几个部分,各个部分代表了不同的存储区域:

  1.代码段(Code或Text)

  代码段由程序中执行的机器代码组成。在C语言中,程序语句进行编译后,形成机器代码。在执行程序的过程中,CPU的程序计数器指向代码段的每一条机器代码,并由处理器依次运行。

  2.只读数据段(RO data)

  只读数据段是程序使用的一些不会被更改的数据,使用这些数据的方式类似查表式的操作,由于这些变量不需要更改,因此只需要放置在只读存储器中即可。

  3.已初始化读写数据段(RW data)

  已初始化数据是在程序中声明,并且具有初值的变量,这些变量需要占用存储器的空间,在程序执行时它们需要位于可读写的内存区域内,并具有初值,以供程序运行时读写。

  4.未初始化数据段(BSS)

  未初始化数据是在程序中声明,但是没有初始化的变量,这些变量在程序运行之前不需要占用存储器的空间。

  5.堆(heap)

  堆内存只在程序运行时出现,一般由程序员分配和释放。在具有操作系统的情况下,如果程序没有释放,操作系统可能在程序(例如一个进程)结束后回收内存。

  6.栈(stack)

  栈内存只在程序运行时出现,在函数内部使用的变量、函数的参数以及返回值将使用栈空间,栈空间由编译器自动分配和释放。

  C语言目标文件的内存布局

  看一个例子:

  int a = 0; //全局初始化区,。data段

  static int b=20; //全局初始化区,。data段

  char *p1; //全局未初始化区 .bss段

  const int A = 10; //.rodata段

  void main(void)

  {

  int b; //栈

  char s[] = "abc"; //栈

  char *p2; //栈

  static int c = 0; //全局(静态)初始化区 .data段

  char *p3 = "123456"; //123456\0在常量区,p3 在栈上。

  p1 = (char*) malloc(10);//分配得来的10和20个字节的区域就在堆区

  p2 = (char*) malloc(20);

  strcpy(p1, "123456"); //123456\0 在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方

  }

 
 代码段、只读数据段、读写数据段、未初始化数据段属于静态区域,而堆和栈属于动态区域。代码段、只读数据段和读写数据段将在链接之后产生,未初始化数据
段将在程序初始化的时候开辟,而堆和栈将在程序的运行中分配和释放。C语言程序分为映像和运行时两种状态。在编译-连接后形成的映像中,将只包含代码段
(Text)、只读数据段(RO Data)和读写数据段(RW Data)。在程序运行之前,将动态生成未初始化数据段(BSS),在程序的运行时还将
动态形成堆(Heap)区域和栈(Stack)区域。一般来说,在静态的映像文件中,各个部分称之为节(Section),而在运行时的各个部分称之为段
(Segment)。如果不详细区分,可以统称为段。

  知识点:

  C语言在编译和连接后,将生成代码段(Text)、只读数据段(RO Data)和读写数据段(RW Data)。在运行时,除了以上三个区域外,还包括未初始化数据段(BSS)区域和堆(Heap)区域和栈(Stack)区域。

  二:C语言程序的段

  1.代码段(code或text)

  代码段由各个函数产生,函数的每一个语句将最终经过编绎和汇编生成二进制机器代码(具体生生哪种体系结构的机器代码由编译器决定)。

  2.只读数据段(RO Data)

  只读数据段由程序中所使用的数据产生,该部分数据的特点是在运行中不需要改变,因此编译器会将该数据段放入只读的部分中。C语言中的只读全局变量,只读局部变量,程序中使用的常量等会在编译时被放入到只读数据区。

 
 注意:定义全局变量const char a[100]={"ABCDEFG"};将生成大小为100个字节的只读数据区,并使用“ABCDEFG”初
始化。如果定义为:const char a[ ]={"ABCDEFG"};则根据字符串长度生成8个字节的只读数据段(还有’\0’),所以在只读数
据段中,一般都需要做完全的初始化。

  3.读写数据段(RW Data)

  读写数据段表示了在目标文件中一部分可以
读也可以写的数据区,在某些场合它们又被称为已初始化数据段,这部分数据段和代码段,与只读数据段一样都属于程序中的静态区域,但具有可写性的特点。通常
已初始化的全局变量和局部静态变量被放在了读写数据段,如: 在函数中定义static char b[ 100]={“ABCDEFG”};读写数据区
的特点是必须在程序经过初始化,如果只定义,没初始值,则不会生成读写数据区,而会定位为未初始化数据区(BSS)。如果全局变量(函数外部定义的变量)
加入static修饰,这表示只能在文件内使用,而不能被其他文件使用。

  4. 未初始化数据段(BSS)

  与读写数据段类似,它也属于静态数据区,但是该段中的数据没有经过初始化。因此它只会在目标文件中被标识,而不会真正称为目标文件中的一段,该段将会在运行时产生。未初始化数据段只在运行的初始化阶段才会产生,因此它的大小不会影响目标文件的大小。

  在C语言的程序中,对变量的使用还有以下几点需要注意:

  1.函数体中定义的变量通常是在栈上,不需要在程序中进行管理,由编绎器处理。

  2.用malloc,calloc,realloc等分配内存的函数所分配的内存空间在堆上,程序必须保证在使用free释放,否则会发生内存泄漏。

  3.所有函数体外定义的是全局变量,加了static后的变量不管是在函数内部或外部都放在全局区。

  4.使用const定义的变量将放于程序的只读数据区。

  三:程序中段的使用

  下面用一个简单的例子来说明C语言中变量和段的对应关系。C语言程序中的全局区(静态区),实际对应着下述几个段:RO Data; RW Data ; BSS Data.

  一般来说,直接定义的全局变量在未初始化数据区,如果该变量有初始化则是在已初始化数据区(RW Data),加上const则将放在只读数据区。

  const char ro[ ] = {"this is read only data"}; //只读数据区

  static char rw_1[ ] ={"this is global read write data"}; //已初始化读写数据段

  char BSS_1[ 100]; //未初始化数据段

  const char *ptrconst ="constant data"; //字符串放在只读取数据段

  int main()

  {

  short b; //在栈上,占用2个字节

  char a[100]; //在栈上开辟100个字节, 它的值是其首地址

  char s[ ]="abcdefg"; //s在栈上,占用4个字节,"abcdefg"本身放置在只读数据存储区,占8个字节

  char *p1; //p1在栈上,占用4个字节

  char *p2="123456"; //p2 在栈上,p2指向的内容不能改,“123456”在只读数据区

  static char rw_2[ ]={"this is local read write data"};//局部已初始化读写数据段

  static char BSS_2[100]; //局部未初始化数据段

  static int c = 0; //全局(静态)初始化区

  p1=(char *)malloc(10 * sizeof(char ) ); //分配内存区域在堆区

  strcpy(p1,"xxxx"); //“XXXX”放在只读数据区,占5个字节

  free(p1); //使用free释放p1所指向的内存

  return 0;

  }

 
 读写数据段包含了忆初始化的全局变量 static char rw_1[ ]以及局部静态变量static rw_2[ ].其差别在于编绎时,是在
函数内部使用的还是可以在整个文件中使用。对于rw_1[] 无论有无static 修饰,其都将被放置在读写数据区,只是能否被其它文件引用与否。对于
后者就不一样了,它是局部静态变量,放置在读写数据区,如果没static修饰,其意义完全改变,它将会是开辟在栈空间的局部变量,而不是静态变量,在这
里rw_1[],rw_2[]后没具体数值,表示静态区大小同后面字符串长度决定。

  对于未初始化数据区BSS_1[100]与
BSS_2[100],其区别在于前者是全局变量,在所有文件中都可以使用;后者是局部变量,只在函数内部使用。未初始化数据段不设置后面的初始化数值,
因此必须使用数值指定区域的大小,编绎器将根据大小设置BSS中需要增加的长度。

  栈空间主要用于以下3数据的存储:

  1.函数内部的动态变量

  2.函数的参数

  3.函数的返回值

  栈空间是动态开辟与回收的。在函数调用过程中,如果函数调用的层次比较多,所需要的栈空间也逐渐加大,对于参数的传递和返回值,如果使用较大的结构体,在使用的栈空间也会比较大。

时间: 2024-10-13 12:06:40

C语言编程程序的内存如何布局的相关文章

C语言编程程序的内存怎样布局

在c语言中,每一个变量和函数有两个属性:数据类型和数据的存储类别. C语言中局部变量和全局变量变量的存储类别(static,extern,auto,register) 1. 从变量的作用域划分变量(即从空间)角度来分 1.全局变量 2.局部变量 2. 从变量值存在的时间或存储类别(即生存期)角度来分 2.1. 静态存储区 存放下面数据: 代码段(text).仅仅读数据段(rodata).读写数据段(rwdata).未初始化数据段(bbs) 静态存储区存放所有的全局变量, 这些变量将在链接之后产生

教您布局C语言编程程序的内存

重点关注以下内容: C语言程序在内存中各个段的组成 C语言程序连接过程中的特性和常见错误 C语言程序的运行方式 一:C语言程序的存储区域 由C语言代码(文本文件)形成可执行程序(二进制文件),需要经过编译-汇编-连接三个阶段.编译过程把C语言文本文件生成汇编程序,汇编过程把汇编程序形成二进制机器代码,连接过程则将各个源文件生成的二进制机器代码文件组合成一个文件. C语言编写的程序经过编译-连接后,将形成一个统一文件,它由几个部分组成.在程序运行时又会产生其他几个部分,各个部分代表了不同的存储区域

C语言编程入门——动态内存分配

内存管理,是指软件运行时对计算机内存资源的分配和使用的技术.其最主要的目的是如何高效,快速的分配,并且在适当的时候释放和回收内存资源.内存管理是C语言编程中重要的组成部分,C语言中的内存需要手动分配,手动释放,一般遵循分配多少,释放多少,以免造成内存泄漏.内存管理是一项重要且复杂的事情,理解内存管理,对后面课程及项目的学习会有很大的作用. 之前创建变量,是系统自动分配的内存,放在栈内存中,销毁后被系统自动回收,手动分配的内存,放在堆内存中,需要手动释放.千万不要忘记销毁对象手动将内存释放并将指针

C语言应用程序的内存图

1.综述 c语言应用程序加载到内存,这时它所占据的内存分为四个区,分别为栈Stack,堆Heap,静态存储区Static Area,代码存储区Code Area,这四个区分别放置应用程序的不同部分,从而便于操作系统管理. 2.Windows应用程序内存图如下

C语言之程序中内存的来源:栈 堆 数据段

程序在运行的时候,其内存的来源主要通过三种方法:  栈  堆  数据段,总体上来讲栈是一般用来存放小内存的局部变量,堆内存和数据段的属性很像,在使用的的时候,如果这个变量是伴随程序一直存在则使用全局变量,也就是放在数据段,如果一个变量使用完了就没用了,那么就适合用堆内存(先申请,然后释放即可), 一:栈(stack): 1:栈在使用的时候是编译器自动分配内存空间的,不需要程序员的干涉,其次栈的大小是有限的,所以当我们定义的变量需要大片的内存的时候就不适合使用栈, 2:栈存放的是普通变量,栈的在使

C语言程序的内存布局

一:C语言程序的存储区域 C语言编写的程序经过编绎-链接后,将形成一个统一的文件,它由几个部分组成,在程序运行时又会产生几个其他部分,各个部分代表了不同的存储区域: 1.代码段(Code or Text): 代码段由程序中的机器码组成.在C语言中,程序语句进行编译后,形成机器代码.在执行程序的过程中,CPU的程序计数器指向代码段的每一条代码,并由处理器依次运行. 2.只读数据段(RO data): 只读数据段是程序使用的一些不会被更改的数据,使用这些数方式类似查表式的操作,由于这些变量不需要更改

C语言-第31课 - 程序的内存布局

第31课 - 程序的内存布局 代码在可执行程序中有如下的对应关系 有初始值的放在data段,没有初始的放在bss段.静态存储区就对应了这两个区域. 我们写的函数,可移执行的代码段,放在text段. 这里并不见堆和栈的踪影,因为这只是我们的可执行文件的布局,并不会我们执行起来,进程的布局,所以是看不到堆和栈的. 文件布局在内存中的映射 高地址内存 File header 栈 .text 堆 .data .bss .data .bss .text 未映射区域 a.out a.out进程的地址空间 当

剖析程序的内存布局

原文标题:Anatomy of a Program in Memory 原文地址:http://duartes.org/gustavo/blog/ [注:本人水平有限,只好挑一些国外高手的精彩文章翻译一下.一来自己复习,二来与大家分享.] 内存管理模块是操作系统的心脏:它对应用程序和系统管理非常重要.今后的几篇文章中,我将着眼于实际的内存问题,但也不避讳其中的技术内幕.由于不少概念是通用的,所以文中大部分例子取自32位x86平台的Linux和Windows系统.本系列第一篇文章讲述应用程序的内存

程序的内存布局——函数调用栈的那点事

[注]此文是<程序员的自我修养>的读书总结,其中掺杂着一些个人的理解,若有不对,欢迎拍砖. 程序的内存布局 现代的应用程序都运行在一个虚拟内存空间里,在32位的系统里,这个内存空间拥有4GB的寻址能力.现代的应用程序可以直接使用32位的地址进行寻址,整个内存是一个统一的地址空间,用户可以使用一个32位的指针访问任意内存位置. 在进程的不同地址区间上有着不同的地位,Windows在默认情况下会将高地址的2GB空间分配给内核,而Linux默认将高地址的1GB空间分配给内核,具体的内存布局如下图: