mysql索引 B+树

如上图,是一颗b+树,关于b+树的定义可以参见B+树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中

###b+树的查找过程
如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。

时间: 2024-11-06 16:00:15

mysql索引 B+树的相关文章

MySQL索引-B+树(看完你就明白了)

索引是一种数据结构,用于帮助我们在大量数据中快速定位到我们想要查找的数据.索引最形象的比喻就是图书的目录了.注意这里的大量,数据量大了索引才显得有意义,如果我想要在 [1,2,3,4] 中找到 4 这个数据,直接对全数据检索也很快,没有必要费力气建索引再去查找. 索引在 MySQL 数据库中分三类: B+ 树索引 Hash 索引 全文索引 我们今天要介绍的是工作开发中最常接触到的 InnoDB 存储引擎中的 B+ 树索引.要介绍 B+ 树索引,就不得不提二叉查找树,平衡二叉树和 B 树这三种数据

MySQL 索引B+树原理,以及建索引的几大原则

MySQL事实上使用不同的存储引擎也是有很大区别的,下面猿友们可以了解一下. 一.存储引擎的比较 注:上面提到的B树索引并没有指出是B-Tree和B+Tree索引,但是B-树和B+树的定义是有区别的. 在?MySQL?中,主要有四种类型的索引,分别为:B-Tree 索引, Hash 索引, Fulltext 索引和 R-Tree 索引. B-Tree?索引是?MySQL?数据库中使用最为频繁的索引类型,除了 Archive 存储引擎之外的其他所有的存储引擎都支持 B-Tree 索引.Archiv

CodingLabs - MySQL索引背后的数据结构及算法原理

原文:CodingLabs - MySQL索引背后的数据结构及算法原理 首页 | 标签 | 关于我 | +订阅 | 微博 MySQL索引背后的数据结构及算法原理 作者 张洋 | 发布于 2011-10-18 MySQL 索引 B树 优化 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等.为了避免混乱,本文将只关注

B+树|MYSQL索引使用原则

MYSQL一直了解得都不多,之前写sql准备提交生产环境之前的时候,老员工帮我检查了下sql,让修改了一下存储引擎,当时我使用的是Myisam,后面改成InnoDB了.为什么要改成这样,之前都没有听过存储引擎,于是网上查了一下. 事实上使用不同的存储引擎也是有很大区别的,下面猿友们可以了解一下. 一.存储引擎的比较 注:上面提到的B树索引并没有指出是B-Tree和B+Tree索引,但是B-树和B+树的定义是有区别的. 在 MySQL 中,主要有四种类型的索引,分别为: B-Tree 索引, Ha

MySQL的B树索引与索引优化

MySQL的MyISAM.InnoDB引擎默认均使用B+树索引(查询时都显示为"BTREE"),本文讨论两个问题: 为什么MySQL等主流数据库选择B+树的索引结构? 如何基于索引结构,理解常见的MySQL索引优化思路? 为什么索引无法全部装入内存 索引结构的选择基于这样一个性质:大数据量时,索引无法全部装入内存. 为什么索引无法全部装入内存?假设使用树结构组织索引,简单估算一下: 假设单个索引节点12B,1000w个数据行,unique索引,则叶子节点共占约100MB,整棵树最多20

MySQL 索引与 B+ 树

MySQL 索引与 B+ 树 B+ 树 MySQL Innodb 存储引擎是使用 B+ 树来组织索引的.在介绍 B+ 树以前,先认识一下什么是 B 树,B 树是平衡二叉树,与一般的二叉查找树不同,平衡二叉树首先满足二叉查找树的定义(左子树的键小于根的键,右子树的键大于根的键),其次必须满足任何节点的两个子树的高度最大差为 1.B 树的维护要求插入和更新节点时,通过 1 次或多次左旋和右旋来满足平衡的条件.二叉查找树是否平衡直接影响了查找需要比较的次数. B+ 树与普通的二叉树不同,它的节点由多个

浅谈MySQL的B树索引与索引优化

前言 MySQL的MyISAM.InnoDB引擎默认均使用B+树索引(查询时都显示为"BTREE"),本文讨论两个问题: 为什么MySQL等主流数据库选择B+树的索引结构? 如何基于索引结构,理解常见的MySQL索引优化思路? 索引结构的选择基于这样一个性质:大数据量时,索引无法全部装入内存. 为什么索引无法全部装入内存? 假设使用树结构组织索引,简单估算一下: 假设单个索引节点12B,1000w个数据行,unique索引,则叶子节点共占约100MB,整棵树最多200MB. 假设一行数

Mysql索引为什么用B+树而不用B-树

先从数据结构的角度来看 我们知道B-树和B+树最重要的一个区别就是B+树只有叶节点存放数据,其余节点用来索引,而B-树是每个索引节点都会有Data域. 这就决定了B+树更适合用来存储外部数据,也就是所谓的磁盘数据. 从Mysql(Inoodb)的角度来看 B+树是用来充当索引的,一般来说索引非常大,尤其是关系性数据库这种数据量大的索引能达到亿级别,所以为了减少内存的占用,索引也会被存储在磁盘上.那么Mysql如何衡量查询效率呢?磁盘IO次数,B-树(B类树)的特定就是每层节点数目非常多,层数很少

搞懂Mysql InnoDB B+树索引

一.InnoDB索引 InnoDB支持以下几种索引: B+树索引 全文索引 哈希索引 本文将着重介绍B+树索引.其他两个全文索引和哈希索引只是做简单介绍一笔带过. 哈希索引是自适应的,也就是说这个不能人为干预在一张表生成哈希索引,InnoDB会根据这张表的使用情况来自动生成. 全文索引是将存在数据库的整本书的任意内容信息查找出来的技术,InnoDB从1.2.x版本支持.每张表只能有一个全文检索的索引. B+树索引是传统意义上的索引,B+树索引并不能根据键值找到具体的行数据,B+树索引只能找到行数