常用的较优排序之快速排序,堆排序,归并排序

1、快速排序

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序。可以用递归和非递归的方法分别实现。

int _QuickSort(int* a,int left,int right,int key)
{
	while (left < right)
	{
		while (left < right&&a[left] <=a[key])
		{
			left++; //找出比a[key]大的下标
		}
		while (left < right&&a[right] >=a[key])
		{
			right--; //找出比a[key]小的下标
		}
		swap(a[left], a[right]);  //交换
	}
	if (a[left] > a[key])   //如果需要排序的序列都小于a[key]值
		swap(a[left],a[key]);//把 key-1 当边界,如图中当第二次a[key]为5时。
		return left;     
	}
	return key;
}

int _QuickSort2(int* a, int left, int right, int key)
{
	int cur = left;
	int prev = left - 1;
	while (cur <= right)
	{
		if (a[cur] <= a[key])
		{
			prev++;
			if(prev!=cur)
				swap(a[prev], a[cur]);
		}
		cur++;
	}
	swap(a[prev+1],a[key]);
	return prev+1;
}
void QuickSort(int* a, int left, int right)
{
	assert(a);
	if (left < right)
	{
		int mid = FindMid(a,left,right);//3位取中,把左边右边和中间的数比较,找出中间的数作为key
		swap(a[mid],a[right]);
		int key = right;
		int boundary=_QuickSort2(a,left,right-1,key);//一趟排序后找出边界值
		//int boundary=_QuickSort(a,left,right-1,key);//有两种方法找出边界值
		QuickSort(a,left,boundary-1);
		QuickSort(a, boundary+1,right);
	}
} 
//非递归借用栈来完成
void NORQucikSort(int* a,int left,int right)
{
	stack<int> s1;
	s1.push(left);
	s1.push(right);
	while (!s1.empty())
	{
		int key = s1.top();
		int _right = s1.top();
		s1.pop();
		int _left = s1.top();
		s1.pop();
		if (_left >= _right)  
			continue;
		int boundary = _QuickSort(a, _left, _right - 1, key);
		//int boundary = _QuickSort2(a, _left, _right - 1, key);
		s1.push(boundary + 1); //先压key右边的序列
		s1.push(_right);

		s1.push(_left);
		s1.push(boundary-1);
	}
}
//优化快速排序  三数取中
int FindMid(int* a, int left, int right)
{
	int mid = left + (right - left) / 2;
	if (a[left] > a[right])
	{
		if (a[left] < a[mid])
			return left;
		else if (a[mid]>a[right])
			return mid;
		return right;
	}
	else
	{
		if (a[left] > a[mid])
			return left;
		else if (a[mid] < a[right])
			return mid;
		return right;
	}
}

2、堆排序

堆排序的思想就是如果是升序排序,则建最大堆,反之,则建最小堆。

建堆之后,从第一个数开始和最后一个数交换,缩小堆的范围(去除最后一个数),然后第一个数向下调整,则最大的数已在最后。直到堆里只有一个数。

建堆过程就是从最后一个非叶子节点直到跟节点向下调整。假设我们现在要升序排序。即就是向下调整时,把小的交换到父节点。

void AdjustDown(int *a,int size,int parent)   //向下对齐
{
	int child = parent * 2 + 1;           //把左孩子的下标给child
	while (child < size)        //保证向下对齐直到child超出范围
	{
		if (child + 1 < size&&a[child + 1] > a[child])  //当右孩子>左孩子时,child变为右孩子下标
		{
			child++;
		}
		if (a[parent] < a[child])
		{
			swap(a[parent],a[child]);
			parent = child;               
			child = parent * 2 + 1;       
		}
		else
		{
			break;
		}
	}
}

void HeapSort(int *a, int size)
{
	assert(a);
	for (int i = (size - 2) / 2; i >= 0; i--)
	{
		AdjustDown(a,size,i);         //从图中下标为4的非叶子节点开始,进行向下对齐
	}
	for (int i = size - 1; i > 0; i--)
	{
		swap(a[0],a[i]);  //把最大堆中的第一个元素和最后一个元素交换,此时最后一个元素最大
		AdjustDown(a,i,0);//把剩余的元素建成最大堆
	}
}

3、归并排序

归并排序时的时间复杂度为O(nlgn) 其主要思想是分治法(divide and conquer),分就是要将n个元素的序列划分为两个序列,再分为4个序列,直到每个序列只有一个数,然后合并两个有效序列为一个有效序列,直到整个序列为有序序列。

递归实现:

void MergeSort(int *a, int size)
{
	assert(a);
	int *tmp = new int[size];
	int left = 0, right = size - 1;
	_MergeSort(a,tmp,left,right);
}
void _MergeSort(int* a, int* tmp, int left, int right)
{
	if (left < right)
	{
		int mid = left + (right - left) / 2;//取中间下标
		_MergeSort(a,tmp,left,mid);       //递归进行
		_MergeSort(a, tmp, mid+1, right);  //直到递归到左右序列只有一个元素
		Combine(a,tmp,left,mid,mid+1,right);//2个有序序列合并成一个
		memcpy(a+left,tmp,(right-left+1)*sizeof(int));//把有序序列拷给原数组
	}
}
void Combine(int* a, int* tmp, int begin1, int end1,int begin2, int end2)
{
	int index = 0;
	while (begin1 <= end1&&begin2 <= end2)
	{
		while (a[begin1] <= a[begin2]&&begin1<=end1)
		{
			tmp[index++] = a[begin1];
			begin1++;
		}
		while (a[begin1] > a[begin2] && begin2 <= end2)
		{
			tmp[index++] = a[begin2];
			begin2++;
		}
	}
	while (begin1 <= end1)
	{
		tmp[index++] = a[begin1++];
	}
	while (begin2 <= end2)
	{
		tmp[index++] = a[begin2++];
	}
}

而递归排序的非递归实现,则采取相反的思路,先把整个数组分成n个序列,每次两个序列合并。每两个序列有序后,合4个序列,以此类推。

void MergeSort2(int *a, int size)
{
	assert(a);
	int gap = 0;
	int *temp = new int[size];
	int count = 0;
	//gap指begin1和end1每次的差值 所差次数依次为,0,1,3,7(2^n-1)
	while (gap < size)
	{
		int begin1 = 0, end1 = gap, begin2 = end1 + 1, end2 = begin2 + gap;
		for (; end2 < size; begin1=end2+1,end1=begin1+gap,begin2=end1+1,end2=begin2+gap)
		{
			Combine(a,temp,begin1,end1,begin2,end2);
			memcpy(a+begin1,temp,(end2-begin1+1)*sizeof(int));
		}
		if (begin2 < size)
		{
			end2 = size - 1;
			Combine(a, temp, begin1, end1, begin2, size-1);
			memcpy(a + begin1, temp, (end2 - begin1 + 1)*sizeof(int));
		}
		count++;
		gap=pow(2,count)-1;
	}

}

时间: 2024-10-11 12:00:09

常用的较优排序之快速排序,堆排序,归并排序的相关文章

插入排序、冒泡排序、选择排序、希尔排序、快速排序、归并排序、堆排序和LST基数排序——C++实现

首先是算法实现文件Sort.h,代码如下: /* * 实现了八个常用的排序算法:插入排序.冒泡排序.选择排序.希尔排序 * 以及快速排序.归并排序.堆排序和LST基数排序 * @author gkh178 */ #include <iostream> template<class T> void swap_value(T &a, T &b) { T temp = a; a = b; b = temp; } //插入排序:时间复杂度o(n^2) template<

C# 插入排序 冒泡排序 选择排序 快速排序 堆排序 归并排序 基数排序 希尔排序

下面列出了数据结构与算法的八种基本排序:插入排序 冒泡排序 选择排序 快速排序 堆排序 归并排序 基数排序 希尔排序,然后是测试的例子.代码位置:http://download.csdn.net/detail/luozuolincool/8040027 排序类: public class Sortings { //插入排序 public void insertSort(int[] array) { int temp = 0; int index = 0; for (int i = 0; i <

七大内部排序算法总结(插入排序、希尔排序、冒泡排序、简单选择排序、快速排序、归并排序、堆排序)

 写在前面: 排序是计算机程序设计中的一种重要操作,它的功能是将一个数据元素的任意序列,重新排列成一个按关键字有序的序列.因此排序掌握各种排序算法非常重要.对下面介绍的各个排序,我们假定所有排序的关键字都是整数.对传入函数的参数默认是已经检查好了的.只是简单的描述各个算法并给出了具体实现代码,并未做其他深究探讨. 基础知识: 由于待排序的记录数量不同,使得排序过程中设计的存储器不同,可将排序方法分为两大类:一类是内部排序,指的是待排序记录存放在计算机随机存储器中进行的排序过程.另一类是外部排序,

九种经典排序算法详解(冒泡排序,插入排序,选择排序,快速排序,归并排序,堆排序,计数排序,桶排序,基数排序)

综述 最近复习了各种排序算法,记录了一下学习总结和心得,希望对大家能有所帮助.本文介绍了冒泡排序.插入排序.选择排序.快速排序.归并排序.堆排序.计数排序.桶排序.基数排序9种经典的排序算法.针对每种排序算法分析了算法的主要思路,每个算法都附上了伪代码和C++实现. 算法分类 原地排序(in-place):没有使用辅助数据结构来存储中间结果的排序**算法. 非原地排序(not-in-place / out-of-place):使用了辅助数据结构来存储中间结果的排序算法 稳定排序:数列值(key)

单向链表排序:快速排序和归并排序

归并排序改变链接 快速排序改变链接 快速排序改变节点值 所有源码和测试函数 对单向链表的排序有2种形式,只改变节点的值 和 只改变链接 // 节点 struct ListNode { int val; ListNode* next; ListNode(int v, ListNode* n = NULL) { val = v; next = n; } }; 本文链接:单向链表排序:快速排序和归并排序 参考资料链接: 链表排序(冒泡.选择.插入.快排.归并.希尔.堆排序): 1. 归并排序(改变链接

【数据结构】常用排序算法(包括:选择排序,堆排序,冒泡排序,选择排序,快速排序,归并排序)

直接插入排序: 在序列中,假设升序排序 1)从0处开始. 1)若走到begin =3处,将begin处元素保存给tmp,比较tmp处的元素与begin--处元素大小关系,若begin处<begin-1处,将begin-1处元素移动到begin:若大于,则不变化.再用tmp去和begin--处的元素用同样的方法去作比较,直至begin此时减少到数组起始坐标0之前结束. 3)以此类推,依次走完序列. 时间复杂度:O() 代码如下: //Sequence in ascending order  voi

JavaScript排序算法(希尔排序、快速排序、归并排序)

以var a = [4,2,6,3,1,9,5,7,8,0];为例子. 1.希尔排序. 希尔排序是在插入排序上面做的升级.是先跟距离较远的进行比较的一些方法. function shellsort(arr){ var i,k,j,len=arr.length,gap = Math.ceil(len/2),temp; while(gap>0){ for (var k = 0; k < gap; k++) { var tagArr = []; tagArr.push(arr[k]) for (i

Javascript中的冒泡排序,插入排序,选择排序,快速排序,归并排序算法详解

http://baozoumanhua.com/users/10873617/articleshttp://baozoumanhua.com/users/10873639/articleshttp://baozoumanhua.com/users/10873665/articleshttp://baozoumanhua.com/users/10873687/articleshttp://baozoumanhua.com/users/10873718/articleshttp://baozouma

冒泡排序,快速排序,归并排序,插入排序,希尔排序,堆排序,计数排序,桶排序,基数排序

选择排序,冒泡排序,快速排序,归并排序,插入排序,希尔排序,计数排序,桶排序,基数排序 以上是一些常用的排序算法. 选择排序 for(int i = 0; i < n; i++) { int minval = a[i]; int minid = i; for (int j = i+1; j < n; j++) { if (a[j] < minval) { minid = j; minval = a[j]; } } swap(a[i], a[minid]); } 最简单的就是选择排序,就是