Given a binary tree, flatten it to a linked list in-place.
For example,
Given
1 / 2 5 / \ 3 4 6
The flattened tree should look like:
1 2 3 4 5 6
Hints:
If you notice carefully in the flattened tree, each node‘s right child points to the next node of a pre-order trave
这道题要求把二叉树展开成链表,根据展开后形成的链表的顺序分析出是使用先序遍历,那么只要是数的遍历就有递归和非递归的两种方法来求解,这里我们也用两种方法来求解。首先来看递归版本的,思路是先利用DFS的思路找到最左子节点,然后回到其父节点,把其父节点和右子节点断开,将原左子结点连上父节点的右子节点上,然后再把原右子节点连到新右子节点的右子节点上,然后再回到上一父节点做相同操作。代码如下:
// Recursion class Solution { public: void flatten(TreeNode *root) { if (!root) return; if (root->left) flatten(root->left); if (root->right) flatten(root->right); TreeNode *tmp = root->right; root->right = root->left; root->left = NULL; while (root->right) root = root->right; root->right = tmp; } };
例如,对于下面的二叉树,上述算法的变换的过程如下:
1 / 2 5 / \ 3 4 6 1 / 2 5 \ 3 6 \ 4 1 2 3 4 5 6
下面我们再来看非迭代版本的实现,这个方法是从根节点开始出发,先检测其左子结点是否存在,如存在则将根节点和其右子节点断开,将左子结点及其后面所有结构一起连到原右子节点的位置,把原右子节点连到元左子结点最后面的右子节点之后。代码如下:
// Non-recursion class Solution { public: void flatten(TreeNode *root) { TreeNode *cur = root; while (cur) { if (cur->left) { TreeNode *p = cur->left; while (p->right) p = p->right; p->right = cur->right; cur->right = cur->left; cur->left = NULL; } cur = cur->right; } } };
例如,对于下面的二叉树,上述算法的变换的过程如下:
1 / 2 5 / \ 3 4 6 1 2 / 3 4 5 6 1 2 3 4 5 6
此题还可以延伸到用中序,后序,层序的遍历顺序来展开原二叉树,分别又有其对应的递归和非递归的方法,有兴趣的童鞋可以自行实现。。
时间: 2024-10-14 16:34:49