MD5和SHA1算法C++实现及运行时间分析

1.MD5代码实现

HMAC.H即MD5头文件。

#ifndef HMAC_H
#define HMAC_H

//	POINTER defines a generic pointer type
typedef unsigned char *POINTER;

//	UINT2 defines a two byte word
typedef unsigned short int UINT2;

//	UINT4 defines a four byte word
typedef unsigned long int UINT4;

typedef struct
{
	UINT4 state[4];             //	state (ABCD)
	UINT4 count[2];				//	number of bits, modulo 2^64 (lsb first)
	unsigned char buffer[64];   //	input buffer 

} MD5_CTX;

#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21

static unsigned char PADDING[64] = {
  0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

//	F, G, H and I are basic MD5 functions.

#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))

//	ROTATE_LEFT rotates x left n bits.

#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

//
//	FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
//	Rotation is separate from addition to prevent recomputation.
//
#define FF(a, b, c, d, x, s, ac) {  (a) += F ((b), (c), (d)) + (x) + (UINT4)(ac);  (a) = ROTATE_LEFT ((a), (s));  (a) += (b);   }
#define GG(a, b, c, d, x, s, ac) {  (a) += G ((b), (c), (d)) + (x) + (UINT4)(ac);  (a) = ROTATE_LEFT ((a), (s));  (a) += (b);   }
#define HH(a, b, c, d, x, s, ac) {  (a) += H ((b), (c), (d)) + (x) + (UINT4)(ac);  (a) = ROTATE_LEFT ((a), (s));  (a) += (b);   }
#define II(a, b, c, d, x, s, ac) {  (a) += I ((b), (c), (d)) + (x) + (UINT4)(ac);  (a) = ROTATE_LEFT ((a), (s));  (a) += (b);   }

extern void	MD5Init(MD5_CTX *);

extern void	MD5Update(MD5_CTX *, unsigned char *, unsigned int);

extern void	MD5Final(unsigned char [16], MD5_CTX *);

extern void	hmac_md5(
				 unsigned char*  text,
				 int             text_len,
				 unsigned char*  key,
				 int             key_len,
				 unsigned char*  digest
				 );
#endif

HMAC.CPP,即MD5源码

#include "HMAC.H"
#include <string.h>

/*
	Following work is derived from "derived from the RSA Data
	Security, Inc. MD5 Message-Digest Algorithm"
*/

static	void	MD5Transform(UINT4 [4], unsigned char [64]);
static	void	Encode(unsigned char *, UINT4 *, unsigned int);
static	void	Decode(UINT4 *, unsigned char *, unsigned int);
static	void	MD5_memcpy (POINTER, POINTER, unsigned int);
static	void	MD5_memset (POINTER, int, unsigned int);

/*
	MD5 initialization. Begins an MD5 operation, writing a new context.
*/
void	MD5Init(
				MD5_CTX *context
				)
{
	context->count[0] = context->count[1] = 0;

	//
	//	Load magic initialization constants.
	//
	context->state[0] = 0x67452301;
	context->state[1] = 0xefcdab89;
	context->state[2] = 0x98badcfe;
	context->state[3] = 0x10325476;
}

/*
	MD5 block update operation. Continues an MD5 message-digest
	operation, processing another message block, and updating the
	context.
*/

void MD5Update(
			   MD5_CTX			*context,	//	context
			   unsigned char	*input,     //	input block
			   unsigned int		inputLen	//	length of input block
			   )
{
	unsigned int i, index, partLen;

	//
	//	Compute number of bytes mod 64
	//
	index = (unsigned int)((context->count[0] >> 3) & 0x3F);

	//
	//	Update number of bits
	//
	if ((context->count[0] += ((UINT4)inputLen << 3)) < ((UINT4)inputLen << 3))
	{
		context->count[1]++;
	}

	context->count[1] += ((UINT4)inputLen >> 29);

	partLen = 64 - index;

	//
	//	Transform as many times as possible.
	//
	if (inputLen >= partLen)
	{
		MD5_memcpy((POINTER)&context->buffer[index], (POINTER)input, partLen);

		MD5Transform (context->state, context->buffer);

		for (i = partLen; i + 63 < inputLen; i += 64)
		{
			MD5Transform (context->state, &input[i]);
		}

		index = 0;
	}
	else
	{
		i = 0;
	}
	//
	//	Buffer remaining input
	//
	MD5_memcpy((POINTER)&context->buffer[index], (POINTER)&input[i], inputLen-i);
}

/*
	MD5 finalization. Ends an MD5 message-digest operation, writing the
	the message digest and zeroizing the context.
*/

void MD5Final (
				unsigned char	digest[16],		//	message digest
				MD5_CTX			*context		//	context
				)
{
	unsigned char	bits[8];
	unsigned int	index, padLen;

	//
	//	Save number of bits
	//
	Encode (bits, context->count, 8);

	//
	//	Pad out to 56 mod 64.
	//
	index = (unsigned int)((context->count[0] >> 3) & 0x3f);

	padLen = (index < 56) ? (56 - index) : (120 - index);

	MD5Update (context, PADDING, padLen);

	//
	//	Append length (before padding)
	//
	MD5Update (context, bits, 8);

	//
	//	Store state in digest
	//
	Encode (digest, context->state, 16);

	//
	//	Zeroize sensitive information.
	//
	MD5_memset ((POINTER)context, 0, sizeof (*context));

}

/*
	MD5 basic transformation. Transforms state based on block.
*/
static void MD5Transform(
						 UINT4 state[4],
						 unsigned char block[64]
						 )
{
	UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[16];

	Decode (x, block, 64);

	// Round 1
	FF (a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */
	FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */
	FF (c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */
	FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */
	FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */
	FF (d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */
	FF (c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */
	FF (b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */
	FF (a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */
	FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */
	FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
	FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
	FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
	FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
	FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
	FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */

	/* Round 2 */
	GG (a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */
	GG (d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */
	GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
	GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */
	GG (a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */
	GG (d, a, b, c, x[10], S22,  0x2441453); /* 22 */
	GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
	GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */
	GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */
	GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
	GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */
	GG (b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */
	GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
	GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */
	GG (c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */
	GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */

	/* Round 3 */
	HH (a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */
	HH (d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */
	HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
	HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
	HH (a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */
	HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */
	HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */
	HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
	HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
	HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */
	HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */
	HH (b, c, d, a, x[ 6], S34,  0x4881d05); /* 44 */
	HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */
	HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
	HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
	HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */

	/* Round 4 */
	II (a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */
	II (d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */
	II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
	II (b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */
	II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
	II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */
	II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
	II (b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */
	II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */
	II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
	II (c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */
	II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
	II (a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */
	II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
	II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */
	II (b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */

	state[0] += a;
	state[1] += b;
	state[2] += c;
	state[3] += d;

	// Zeroize sensitive information.

	MD5_memset ((POINTER)x, 0, sizeof (x));
}

/*
	Encodes input (UINT4) into output (unsigned char). Assumes len is
	a multiple of 4.
*/
static	void	Encode(
						unsigned char *output,
						UINT4 *input,
						unsigned int len
						)
{
	unsigned int i, j;

	for (i = 0, j = 0; j < len; i++, j += 4)
	{
		output[j]	= (unsigned char)(input[i] & 0xff);
		output[j+1] = (unsigned char)((input[i] >> 8) & 0xff);
		output[j+2] = (unsigned char)((input[i] >> 16) & 0xff);
		output[j+3] = (unsigned char)((input[i] >> 24) & 0xff);
	}
}

/*
	Decodes input (unsigned char) into output (UINT4). Assumes len is
	a multiple of 4.
*/
static void Decode (
					UINT4 *output,
					unsigned char *input,
					unsigned int len
					)
{
	unsigned int i, j;

	for (i = 0, j = 0; j < len; i++, j += 4)
	{
		output[i] = ((UINT4)input[j])			| (((UINT4)input[j+1]) << 8) |
					(((UINT4)input[j+2]) << 16) | (((UINT4)input[j+3]) << 24);
	}
}

static void MD5_memcpy (
						POINTER output,
						POINTER input,
						unsigned int len
						)
{
	unsigned int i;

	for (i = 0; i < len; i++)
	{
		output[i] = input[i];
	}
}

static void MD5_memset (
						POINTER output,
						int value,
						unsigned int len
						)
{
	unsigned int i;

	for (i = 0; i < len; i++)
	{
		((char *)output)[i] = (char)value;
	}
}

/*
	Digests a string and prints the result.
*/
static void MDString (
						char *string
						)
{
	MD5_CTX context;
	unsigned char digest[16];
	unsigned int len = strlen (string);

	MD5Init (&context);
	MD5Update (&context, (unsigned char*)string, len);
	MD5Final (digest, &context);

}

/*
	Function: hmac_md5

*/
void	hmac_md5(
				 unsigned char*  text,		// pointer to data stream
				 int             text_len,  // length of data stream
				 unsigned char*  key,       // pointer to authentication key
				 int             key_len,   // length of authentication key
				 unsigned char*  digest     // caller digest to be filled in
				 )
{
	MD5_CTX context;
	unsigned char k_ipad[65];    // inner padding - key XORd with ipad
    unsigned char k_opad[65];    // outer padding - key XORd with opad
	unsigned char tk[16];

    int i;

	//
    //	if key is longer than 64 bytes reset it to key=MD5(key)
    //
    if (key_len > 64)
	{
		MD5_CTX      tctx;

		MD5Init(&tctx);
		MD5Update(&tctx, key, key_len);
		MD5Final(tk, &tctx);

		key = tk;
		key_len = 16;
	}
	/*
		the HMAC_MD5 transform looks like:

		MD5(K XOR opad, MD5(K XOR ipad, text))

		where K is an n byte key
	 	ipad is the byte 0x36 repeated 64 times

		opad is the byte 0x5c repeated 64 times
     	and text is the data being protected

	*/

	//
	//	start out by storing key in pads
	//
	for(i=0;i<65;i++)
	{
		k_ipad[i]=k_opad[i]=0;
	}

	for(i=0;i<key_len;i++)
	{
		k_ipad[i]=k_opad[i]=key[i];
	}

	//
	//	XOR key with ipad and opad values
	//
    for (i=0; i<64; i++)
	{
		k_ipad[i] ^= 0x36;
		k_opad[i] ^= 0x5c;
	}
	//
	//	perform inner MD5
	//
	MD5Init(&context);
	MD5Update(&context, k_ipad, 64);
	MD5Update(&context, text, text_len);
	MD5Final(digest, &context);          

	//
	//	perform outer MD5
	//
	MD5Init(&context);
	MD5Update(&context, k_opad, 64);
	MD5Update(&context, digest, 16);
    MD5Final(digest, &context);

}

2. SHA1算法代码

sha1.h

#ifndef _IPSEC_SHA1_H_

#define _IPSEC_SHA1_H_

typedef unsigned long	__u32;
typedef unsigned char	__u8;

typedef struct
{
	__u32 state[5];
	__u32 count[2];
	__u8  buffer[64];
} SHA1_CTX;

#if defined(rol)
#undef rol
#endif

#define SHA1HANDSOFF

#define __LITTLE_ENDIAN 

#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))

/* blk0() and blk() perform the initial expand. */
/* I got the idea of expanding during the round function from SSLeay */
#ifdef __LITTLE_ENDIAN
#define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00)     |(rol(block->l[i],8)&0x00FF00FF))
#else
#define blk0(i) block->l[i]
#endif
#define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15]     ^block->l[(i+2)&15]^block->l[i&15],1))

/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);

/* Hash a single 512-bit block. This is the core of the algorithm. */

void SHA1Transform(__u32 state[5], __u8 buffer[64]);
void SHA1Init(SHA1_CTX *context);
void SHA1Update(SHA1_CTX *context, unsigned char *data, __u32 len);
void SHA1Final(unsigned char digest[20], SHA1_CTX *context);
//void hmac_sha1(unsigned char *to_mac,unsigned int to_mac_length, unsigned char *key,unsigned int key_length, unsigned char *out_mac);

/* Function to compute the digest */
void hmac_sha1
(
	unsigned char* d, /* data */
	int	ld, //data len
	unsigned char* k, /* secret key */
	int	lk, //key len
	unsigned char* out /* output buffer, at least "t" bytes */
);

#endif /* _IPSEC_SHA1_H_ */

sha1.cpp

#include "sha1.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <memory.h>

#ifndef SHA_DIGESTSIZE
#define SHA_DIGESTSIZE 20
#endif

#ifndef SHA_BLOCKSIZE
#define SHA_BLOCKSIZE 64
#endif

/* Hash a single 512-bit block. This is the core of the algorithm. */

void SHA1Transform(__u32 state[5], __u8 buffer[64])
{
__u32 a, b, c, d, e;
typedef union {
    unsigned char c[64];
    __u32 l[16];
} CHAR64LONG16;

CHAR64LONG16* block;

#ifdef SHA1HANDSOFF

static unsigned char workspace[64];
    block = (CHAR64LONG16*)workspace;
//    NdisMoveMemory(block, buffer, 64);
    memcpy(block, buffer, 64);
#else
    block = (CHAR64LONG16*)buffer;
#endif
    /* Copy context->state[] to working vars */
    a = state[0];
    b = state[1];
    c = state[2];
    d = state[3];
    e = state[4];
    /* 4 rounds of 20 operations each. Loop unrolled. */
    R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
    R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
    R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
    R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
    R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
    R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
    R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
    R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
    R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
    R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
    R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
    R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
    R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
    R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
    R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
    R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
    R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
    R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
    R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
    R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
    /* Add the working vars back into context.state[] */
    state[0] += a;
    state[1] += b;
    state[2] += c;
    state[3] += d;
    state[4] += e;
    /* Wipe variables */
    a = b = c = d = e = 0;
}

/* SHA1Init - Initialize new context */

void SHA1Init(SHA1_CTX* context)
{
    /* SHA1 initialization constants */
    context->state[0] = 0x67452301;
    context->state[1] = 0xEFCDAB89;
    context->state[2] = 0x98BADCFE;
    context->state[3] = 0x10325476;
    context->state[4] = 0xC3D2E1F0;
    context->count[0] = context->count[1] = 0;
}

/* Run your data through this. */

void SHA1Update(SHA1_CTX* context, unsigned char* data, __u32 len)
{
	__u32 i, j;

    j = context->count[0];
    if ((context->count[0] += len << 3) < j)
	context->count[1]++;
    context->count[1] += (len>>29);
    j = (j >> 3) & 63;
    if ((j + len) > 63) {
//        NdisMoveMemory(&context->buffer[j], data, (i = 64-j));
        memcpy(&context->buffer[j], data, (i = 64-j));
        SHA1Transform(context->state, context->buffer);
        for ( ; i + 63 < len; i += 64) {
            SHA1Transform(context->state, &data[i]);
        }
        j = 0;
    }
    else i = 0;
//    NdisMoveMemory(&context->buffer[j], &data[i], len - i);
    memcpy(&context->buffer[j], &data[i], len - i);
}

/* Add padding and return the message digest. */

void SHA1Final(unsigned char digest[20], SHA1_CTX* context)
{
__u32 i, j;
unsigned char finalcount[8];

    for (i = 0; i < 8; i++) {
        finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)]
         >> ((3-(i & 3)) * 8) ) & 255);  /* Endian independent */
    }
    SHA1Update(context, (unsigned char *)"\200", 1);
    while ((context->count[0] & 504) != 448) {
        SHA1Update(context, (unsigned char *)"\0", 1);
    }
    SHA1Update(context, finalcount, 8);  /* Should cause a SHA1Transform() */
    for (i = 0; i < 20; i++) {
        digest[i] = (unsigned char)
         ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
    }
    /* Wipe variables */
    i = j = 0;
//    NdisZeroMemory(context->buffer, 64);
//    NdisZeroMemory(context->state, 20);
//    NdisZeroMemory(context->count, 8);
//    NdisZeroMemory(&finalcount, 8);
    memset(context->buffer, 0x00, 64);
    memset(context->state, 0x00, 20);
    memset(context->count, 0x00, 8);
    memset(&finalcount, 0x00, 8);

#ifdef SHA1HANDSOFF  /* make SHA1Transform overwrite its own static vars */
    SHA1Transform(context->state, context->buffer);
#endif
}

/* Function to print the digest */
void pr_sha(FILE* fp, unsigned char* s, int t)
{
    int i ;

	for(i=0;i<t;i++)
		printf("%02x",s[i]);
	printf("\n");
	/*
	fprintf(fp, "0x") ;
	for (i = 0 ; i < t ; i++)
	{
		fprintf(fp, "%02x", s[i]) ;
		printf("\n");
	}
	fprintf(fp, "0") ;
	*/
}

void truncate
(
	char* d1, /* data to be truncated */
	char* d2, /* truncated data */
	int len /* length in bytes to keep */
)
{
	int i ;
	for (i = 0 ; i < len ; i++) d2[i] = d1[i];
}

/* Function to compute the digest */
/* Function to compute the digest */
void hmac_sha1
(
	unsigned char* d, /* data */
	int	ld, //data len
	unsigned char* k, /* secret key */
	int	lk, //key len
	unsigned char* out /* output buffer, at least "t" bytes */
	)
{
	int t=SHA_DIGESTSIZE;

	SHA1_CTX ictx, octx ;
	char isha[SHA_DIGESTSIZE], osha[SHA_DIGESTSIZE] ;
	unsigned char key[SHA_DIGESTSIZE] ;
	char buf[SHA_BLOCKSIZE] ;
	int i ;

	if (lk > SHA_BLOCKSIZE) {

		SHA1_CTX tctx ;

		SHA1Init(&tctx) ;
		SHA1Update(&tctx, k, lk) ;
		SHA1Final(key, &tctx) ;

		k = key ;
		lk = SHA_DIGESTSIZE ;
	}

	/**** Inner Digest ****/

	SHA1Init(&ictx) ;

	/* Pad the key for inner digest */
	for (i = 0 ; i < lk ; ++i) buf[i] = k[i] ^ 0x36 ;
	for (i = lk ; i < SHA_BLOCKSIZE ; ++i) buf[i] = 0x36 ;

	SHA1Update(&ictx, (unsigned char*)buf, SHA_BLOCKSIZE) ;
	SHA1Update(&ictx, d, ld) ;

	SHA1Final((unsigned char*)isha, &ictx) ;

	/**** Outter Digest ****/

	SHA1Init(&octx) ;

	/* Pad the key for outter digest */

	for (i = 0 ; i < lk ; ++i) buf[i] = k[i] ^ 0x5C ;
	for (i = lk ; i < SHA_BLOCKSIZE ; ++i) buf[i] = 0x5C ;

	SHA1Update(&octx, (unsigned char*)buf, SHA_BLOCKSIZE) ;
	SHA1Update(&octx, (unsigned char*)isha, SHA_DIGESTSIZE) ;

	SHA1Final((unsigned char*)out, &octx) ;

	/* truncate and print the results */
	t = t > SHA_DIGESTSIZE ? SHA_DIGESTSIZE : t ;
//	truncate(osha, (char*)out, t) ;
//	pr_sha(stdout, out, t) ;

}

3.测试代码及时间分析

#include "stdio.h"
#include "stdlib.h"
#include "time.h"
#include "sha1.h"
#include "HMAC.H"
#include "string.h"

/* Function to print the digest */
void pr_hex(FILE* fp, unsigned char* s, int t)
{
    int i ;

	for(i=0;i<t;i++)
		fprintf(fp, "%02x",s[i]);
	fprintf(fp,"\n");
}

int main( )
{
	clock_t start, finish;
	double Total_time; 

	unsigned char key[20] = "gfedcba987654321";//16bytes
	unsigned char data[20] = "123456789abcdefg";//16bytes
	unsigned char digest[20];
	FILE* time_file;
	if ((time_file = fopen("time.txt","w")) == NULL)
	{
		printf("open time.txt fail\n");
	}

	int data_len, key_len;

	fprintf(time_file, "MD5:\n");
	for (data_len = 4; data_len <= 16; data_len += 4)
	{
		for (key_len = 4; key_len <= 16; key_len += 4)
		{

			/* 测量一个事件持续的时间*/
			fprintf(time_file, "Time to loop 1000 times is(data_len=%2d, key_len=%2d): ",data_len, key_len);
			start = clock(); 

			for (int j = 0; j < 1000; j++)
			{
				hmac_md5(data,data_len,key,key_len,digest);
			}

			finish = clock();
			Total_time = (double)(finish-start) / CLOCKS_PER_SEC;
			fprintf(time_file, "%f seconds\n", Total_time);
			pr_hex(time_file, digest, 16);
		}
	}

	fprintf(time_file, "\n\n\n\nSHA1:\n");
	for (data_len = 4; data_len <= 16; data_len += 4)
	{
		for (key_len = 4; key_len <= 16; key_len += 4)
		{

			/* 测量一个事件持续的时间*/
			fprintf(time_file, "Time to loop 1000 times is(data_len=%2d, key_len=%2d): ",data_len, key_len);
			start = clock(); 

			for (int j = 0; j < 1000; j++)
			{
				hmac_sha1(data,data_len,key,key_len,digest);
			}

			finish = clock();
			Total_time = (double)(finish-start) / CLOCKS_PER_SEC;
			fprintf(time_file, "%f seconds\n", Total_time);
			pr_hex(time_file, digest, 20);
		}
	}
	pr_hex(time_file, digest, 20);

    return 0;

}
时间: 2024-10-21 21:03:07

MD5和SHA1算法C++实现及运行时间分析的相关文章

MD5和SHA-1被破解

2004年8月17日在美国加州圣巴巴拉举行了一次国际密码学学术年会(Crypto'2004),当晚来自中国山东大学的王小云教授做了关于破译 MD5.HAVAL-128. MD4和RIPEMD算法的报告.当她公布了破解结果之后,报告被激动的掌声打断,引起了全场的轰动.会议结束后,很多专家来到王小云教授身边向她表示祝 贺,连世界顶尖级的密码学大师Rivest和Shamir也上前表示他们的欣喜和祝贺,世界信息安全方面的专家们对王小云教授等人的论文给予高度评 价,MD5的设计者和著名的公钥密码系统RSA

(转)3DES、AES、RC6、TEA、RSA、MD5、SHA1、SHA256加密源码大聚齐

原贴地址:http://www.amobbs.com/thread-5466438-1-1.html DES---研究过加密的朋友十分熟悉,老牌的加密方法了.这是一个可逆的对称加密算 法,也是应用最广泛的密钥系统.好像是从1977年美国政府开始采用的.大家都看过U-571吧,DES的思路就是参照二战时期盟军缴获的德军恩格玛加密 机,不过DES比那个要NB的多多了.到现在为止,除了差分分析法和线性分析法外只有暴力穷举法了.前两种方法不是密码学家或数学家都不懂呵,不过穷举 DES,以现有我们大家都可

golang 中的md5 、hmac、sha1算法的简单实现

package main import ( "crypto/hmac" "crypto/md5" "crypto/sha1" "encoding/hex" "fmt" ) func Md5(data string) string { md5 := md5.New() md5.Write([]byte(data)) md5Data := md5.Sum([]byte("")) return

Redis源码中探秘SHA-1算法原理及其编程实现

导读 SHA-1算法是第一代"安全散列算法"的缩写,其本质就是一个Hash算法.SHA系列标准主要用于数字签名,生成消息摘要,曾被认为是MD5算法的后继者.如今SHA家族已经出现了5个算法.Redis使用的是SHA-1,它能将一个最大2^64比特的消息,转换成一串160位的消息摘要,并能保证任何两组不同的消息产生的消息摘要是不同的.虽然SHA1于早年间也传出了破解之道,但作为SHA家族的第一代算法,对我们仍然很具有学习价值和指导意义. SHA-1算法的详细内容可以参考官方的RFC:ht

安全体系(三)——SHA1算法详解

本文主要讲述使用SHA1算法计算信息摘要的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 安全体系(二)——RSA算法详解 为保证传输信息的安全,除了对信息加密外,还需要对信息进行认证.认证的目的有两:一是验证信息的发送者是合法的,二是验证信息的完整性.Hash函数就是进行信息认证的一种有效手段. 1.Hash函数和消息完整性 Hash函数也称为杂凑函数或散列函数,函数输入为一可变长度x,输出为一固定长度串,该串被称为输入x

python 中md5 和 sha1 加密, md5 + os.urandom 生成全局唯一ID

首先先来介绍一下md5 和 sha1 的概念 MD5 MD5的全称是Message-Digest Algorithm 5(信息-摘要算法).128位长度.目前MD5是一种不可逆算法. 具有很高的安全性.它对应任何字符串都可以加密成一段唯一的固定长度的代码. SHA1 SHA1的全称是Secure Hash Algorithm(安全哈希算法) .SHA1基于MD5,加密后的数据长度更长, 它对长度小于264的输入,产生长度为160bit的散列值.比MD5多32位. 因此,比MD5更加安全,但SHA

密码学应用(DES,AES, MD5, SHA1, RSA, Salt, Pkcs8)

目录 一.数据加密标准 - Data Encryption Standard(DES) 二.高级加密标准 - Advanced Encryption Standard(AES) 三.消息摘要算法第五版 - Message-Digest Algorithm 5(MD5) 四.安全哈希算法 - Secure Hash Algorithm(SHA1) 五.公钥加密算法(RSA) 六.干扰项 - 盐(Salt) 七.RSA密钥格式Pkcs8 八.源码下载 数据加密标准 - Data Encryption

【密码学】SHA1算法实现及详解

1 SHA1算法简介 安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA).对于长度小于2^64位的消息,SHA1会产生一个160位的消息摘要.当接收到消息的时候,这个消息摘要可以用来验证数据的完整性.在传输的过程中,数据很可能会发生变化,那么这时候就会产生不同的消息摘要. SHA1有如下特性:不可以从消息摘要中复原信

SHA1算法实现及详解

1 SHA1算法简介 安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA).对于长度小于2^64位的消息,SHA1会产生一个160位的消息摘要.当接收到消息的时候,这个消息摘要可以用来验证数据的完整性.在传输的过程中,数据很可能会发生变化,那么这时候就会产生不同的消息摘要. SHA1有如下特性:不可以从消息摘要中复原信